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Introduction

-

This book is an elaboration of a course given by the author at Moscow.
University for pupils in thc ninth and tenth grades. Jn it we discuss the
development through abstraction of the general definition of distance
and introduce a class of spaces in which the notion. of distance is
defined, the so-called metric-spaces. It will be evident from our dis-
cussion that the general concept of distance is related to a large number
of mathematical phenomena.

With the aid of the concept of distance, it is possible to study problems
concerning the "shortest" path between two points on a surface, the.
geometric properties df multidimensional spaces, methodsOf "noise"
reduction in the coding of information, and methods of "smoothing"
errors in the results of empirical measurements, as svbll as many other
such topics. a

The concept of "distance," moreover, is a good Lustration' or the
role played in mathematics by the generalization of specific ideas,' the
results of which-at times find some rather unexpected applications.
Other good exam-ples of such generalizatitn& which have beeit found
indispensable to many areas of mathematics may,-also be cited: the
notions of function, limit, space, and transformation, as well as the less
familiar concepts of isomorphism, grozip, ring, and so on. Of these
examplest however, the concept oVistance gtems most suited to the
type of elementary 'discussion required by the inexperience of our
audience, a consideration which is the chief motivation Sor our choice
of this particular topic. Our aim is to demonstrate by means accessible
to a wide range of readers the way in which one fruitful idea can shed
liOt on a wide variety of Mathematical questions and, at the same time,
serve as a source of new results-and insight in some particular field of
knowledge. This situation, characteristic of all of tlie sciences, appears

vii



viii Introduction,

quite often 'in mathematics ifi particularly striking ways, making
possible a. dear understanding without the necessity of mastering al
myriad of confusing details. The matie.rial for this book has been chosen1
with this general idea in mind. , .

,

1

The first four chapters are intended to expose the reader to the
generalization of the ordinary geometric definition of distance and to
the illustration of the generalized concept via concrete situations. ,

Chapter 5 describes the so-called sPaceof information, a concept that
plays a majorrole in the theory of information and the general theory
of communication. Chapter &deals with methods of coding information
which allow that infotmatiOn to be relVively unaffected by errors in the
process of transmission.. Since ,in all real communications -devices,
eNs occur in a number of ways, such methods of coding are sential
for modern systems of coma)unication and control. For example n the
transmissign of photographs from the far side, of the mov by a Soviet
space vehicle, erroreducing methods of codification had to be tised.
It is important to note that each of these methods involves the use of
the generalized concept of distance in the space of information.

The material in chapter 7 is somewhat mOreCOmpljcated; there we
dLl with an important class of spaces to which the notion of distance i4,
comMon. Chapter 8 describethe.4plicatiaon of the generalized concept
of distance to the problem of "smoothing" errors in the results of
empirical measuremeys--- -the problem of finding a mathematical
process which w-ll nearly eliminate the effect of error in experimental
data. This chapte is -Fssentially an exposition of the method of least
squares. Some k wledge of differential calculus is necessary for an .

. understanding o is chapter. The reader who has not had the necessary
backgroUnd may omit this section.

,

In the final chapter, the possibility of further generalization of the
concept of distanCe is examined. In this chapter I wish primarily to show
that it is not necessarily trut-, that 'all generalizations possess interesting
properties. It is not always easy to develop a good generalization of a
mathematical concept. At the pere of any worthwhile generalizatioh are .
some es.sential properties of the real world. In particular, the concept of
distance is important because many essential properties of real objects
are related to their mutual disposition, which can frequently be char-
acterized by a pr6perly defined concept of distance. For example,
although it is impossiblpto describe the electrons of an atom as point
masses, quantum mechanics. is nevertheless able to detelmine the
"distance" between the two enerOystates of electrOns. This "distance"
is related conceptually to the "distance" defined in the so-calleA/2
space discussed in chapter 7.
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I shall consider my task complete if this\book is able to give the reader
a satisfactory understanding of the ideas Mentioned above. .

I wish- to take this opportunity to express my gratitude to I. M.
Yaglom, who has provided much valuable advice concerning the
improvement of this thanuscript.
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The Definition
of Mathematical
C9ncepts

t

At first glance, the titLe of this book may seem surprising. Every
schoolboy, it would 'seem, knows what distance is. Even a person Ab
has completely forgotten his high-school geometry and who cannot
accurately formulate a definition of distance would be quick to assert
that.he knows very well what distance is. z

But, in fact, thc matter is much more complicated.
The word distance can take on different meanings depending upon

what particular space one is talking about. We are about to see that this
is true even in situations with, which we are well aC-quainted;

Jn the Euclidean plane and'in ordinary
three-dimensional Euclidean space, the
distance between two pokits M and N
is defined as the length of the line
segment MN joining those points.
When dealing witti distances between
geographical loci on 'the surface of the
earth, however, wc usually have in mind
the length of the smaller arc of the peat
circle joining tliese localities. The dif-
ference betiveen these two meanings of

Fig. 1.1 distance becomes particularly noticeable
if we calculate the distance between the

north pole N and the south pole S (ice fig. 1.1), The ordinary (Euclidean)
distance hpkeen the poles is equal to the diaReter of the earth,
approximatly .8,000 miles. The distance betweeni elle poles along the
surface of the earth is, however, greater than this by a factor of 7r/2 ; it
is about 12,500 miles..

To this example one 'might alpid that, in commerce, even the means of the
transportation to be used must be taken into account in the estimation

_a
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2 The Definition of. Mathenuttical Condos

of dls tances between cities. For example, tlie diStance between two points.
\by ca may differ from the distance by train.

., We can obtain another example of distance if we consider points,in
rugged terrain and define the distance between two such points as the
time necessary for someone on foot to travel from one point to another.

It is dear thafthis distance has nothing in common with the length of
the line seigment joining two points:for the straight line, in general, is
not the best or most possible ,path. Indeed, afoot traveler will calculate
the distance between two points by the time he spends in travel between
them.

Despite differences among these means of measurement, however, it t

js evident that all meanings taken on by the word distance-have some-
thing in COMITIC141.. A measure of "how far apart" two objects are is .
always indicated. Thus, one may svPpose that thexe exists some common
definition of distance Awkiich has various interpretations in various
concrete situations. Such a general definition will be formulated in
chapter 3. But first we shall consider what, iii general, is necessary for
the definition of a mathematical concept,

Modern inathematics is the language of natural science. Underlying
the most important mathematical ideas are spatial-temporal facts about
the world in which we live. Howe*, the relationship between these

.. facts and the corresponding mathematical ideas is sometimes very
complicated.

In every branch of mathematics are some fundament al concepts
w4ich are related in our mind§ to certain physical images. Some of the
fundamental properties of these concepts are formulated as axioms (or
postulates); "truths" that are not proved lout accepted as ; starting.
point. All of the remaining propositions of the given branch of mathe-

.
matics are.derived logically from these axioms without reference to the
properties of the Physical world. The very formulation of a set of axioms
expresses to some degree the relationship between intuitive knbwledge
of properlies associated with these ideas and the empirically obvious
properties of their physical forms. I.

--...
Some of the most important concepts involved in geometry are the

ideas of point, straight line, plane, spuce,,and so on. In a systematic
geometry course it is necessary to develop a list ofsAie most basic
properties of these concepts in the form of a set of axi ms, the basis on
which the.whole structtire of geometry is built.'

Some of the principal concepts involved in algebra are those of sets of
numbers and operations on these numbers. For example, the structure

I. Thc first toYashion such an exposition of geometry was the ancient Greek
mathematician Ealid (fourth-third century B.c.).
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The Definition of Mathematical Concepts 3

of the integers, rational numbers, ?algebraic numbers, real numbers,
complex numbers, and so on, arp studted.

In each of the five number systems specifically mentiOned above, one
can verify that certain fpndamenial laws concer;ing operations on
numbers are satisfied. These are the commutative laki for addition
(a +b=.5+ a), the associative law for addition ([a + b]+c=
a + [b + cl), the commutative law for multiplication (ab = ba), the
associative law for multiplication Uab]c = a[bc]), the distributive law
([a + = ac + bc), and the rules a a = 0, a x = I for a 0,

which chareArize the relationship between the principal operations
(addition and multiplication) and their inverses (subtraction and divi-
sion). All of these laws are satisfied in the number systems listed 2bove
to which they apply. However,'it is not always the case that a given
operation is defined in a given number system. Division is not always
possible within the integers and, therefore, -is not well-deaned as an
operation on the get of integers. If a number sy;tem contains only.

.positive numbers, subtraction is not always possilsle. As it happens,
certain rules for,algebraic transformation of various expressions depend
only on the prdperties listed above. For example, all of the rules for the
solution of first-degree equations and systems Of such equations are
'based upon these laws and upon the possibility of carrying out the
op!eration of division. -

It turns out, in fact; that, it is possible to study many properties of
various number systeins as consequences of the general theory of
systemspn whicaned operations (called addition and multiplication)
satisfy the properties listed above.. Such systems are teribed commutatite
rings or fields in Jnodern algebra (depending on whether it is always s

possibleycarry out division),2
It is possible to view the rules for fra.nsformation of expressions and

for solution of equations in the case of an ar field or ring and to
loot( at the rules normally, developed in high-school algebra as special
cases.'

In contemporary algebL, rings and fields arc usually studied as
generalizations of number systems studied in high school. The basic
properties of operations that can be carried out for integers or for
rational numbers are set down as a starting point,Snd facts that may be
derived logically usiiig these properties "alone arc stuvlied.

In taking this. approach, mathematicians are interested not only in
discovering neSv properties of° the physical world and establishing
relationships among these properties, but also in clarifying properties of

2. For a definition of ring and field see Birkhoff and MacLanc, A Survey of
Modern Algebra New York: Macmillan, 1965).

'14



4 The Definition of Mathematical Concepts

"imaginary" worlds developed by using axioms similar to those of ,the

This facet of mathematics is no less importa than the possibility of
number systems most closely related to physi reality. . .

describing the physical world. The Russian mathematician N. I.
Lobachevskii, by altering one of Euclid's postulates, created. an
"imaginary" geometry, which, long afterwards, served as the basis of

, new ii'hysical concept§ of the universe arising.from Einstein's develop-.

ment of the theory of relativity.
!,

In this book' we shall study one of the most important clf the-
matical conceptsthe concert of distance.

. , .
Out first attempt kl be the listing of Those proper.ties of dista

which are essential to elertentsary geometry. With these laws as our
.1 ibasis, we shall derive the definition of a so-called-metric space and study

vaLious examples of such spaces./We shall see that'such a spreifically
mathematical approach.to the'study of ceriain concepts from the point
of view, of a generaliied concept reveals many interesting facts.

This approach-the creation of generalized concepts and the attempt
I to descrilx physil realities, with the aid of these concepts--is- char-
'Thacteristic of modern mathematiqs and its fields of app1icatjon.3' From

tilis point of view, tkconcept of distance provides a good eixa`mple of
the fruitfulness of s'uch an approach. .

3. We must not overlook the role playsd In cybernetics by such generalized
mathematical concepts as information, aut6mata theory, and algorithm. 4

.

A
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*Distance and
Its Properties in

lementary.
eometry

.

We hope to arrive at a general definition of distance by generalierig
the properties of "ordinary" distance in three-dimensional Euclidean
spage. Therefore, we shall first attempt to list the fundamental properties
.of ordinary distance.

Let us agfee to denote thern distance betwein two points M a'nd N in
tgree-adimensional spacethe length of the line segment MNas
d(M, N).

This notattion emphasizes the fact that the distance between Af and N
is a real number which is completely determined by points-A/ and N. In

other words, distance i a real-valued function of pairs of points. If we
characterize each point by an ordered triple of coordinates, say 141 =

(x, y, z) and N (x1, yi, z1), then distance ,in three-space becomes a
function of six variables: ,

' d(M, N) =' F(x, y, z, xl, Yi, z1)

A.4 (xyz) M (x r)

Fig. 2;1 Fig. 2.2

*
With the aid of figure 2.1, 'one can derive a closed algebraic expression

for this function. Pictured is a parallelepiped with sides parallel to the
5

1 4



'6 Distanee.and Its Propertiis In Elementary getotnetry

coordinate axes. We know that.the square of the length of the diagonal
# of a parallelepiped is eqnal to the sum of the squans of the lengths of

its sides. Consequently,

.14
MN2 =. MM12 + MM22 + MM32

41kr = xr)2 + (y yO2 + (Z_zi)2

or

d(M, N) if(x 7 xj)2 + YO' + (z zr)2 . (2.1). ,
.

It is even sinfpler to calculate thes.i.ply& between the points M = (x, y)
.. and N = (x1, yi) in the Eucli ean plane (see fig. 2.2). For tins -

calculation, we need only note that the length of the line segrilent ML is
, just Ix x11, artd,, similarly, that the length of the line segment/7W i;

ly yil. By the Pythagorcan theorem,

so that

, MN2 ML2 LN2 ,

d(M,.N) (y y)2. (2.2)

Despite the importance of equations (2.1) a a (2.2), the propertids
.of distance that we shall need can be obtained without, the use of a
coordinate system..

These prpperties,can be formulated as.follows:
1. d(M, N) = d(N, M) (symmetry).
2. d(M, N) 0 (nonnegativity).
3. d(M, N) = 0 if and -only if the points 14.1. and N coincide (pon-

degeneracy).
4, d(M, N) < d(M, L) + d(L, N) for arbitrary points M, N, and L

(the triangle inequality).
Properties 1, 2, and 3 are obviously basic to Euclidean distance. They

indicate simply that the length of the segment MN is equal to the
, length of the segment NM, that this length is always nonncgativc, and
that it is equal to zero if and only if the two endpoints of the segment
coincide.

Property 4. becomes evident if we draw the plane determined by the
points M, L, and N (and, therefore, containing the triangle MLN)
(fig. 2.3). Property 4 then indicates only that the length of side MN does

1 5
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Distance and ItsProperties In Elementary Geometri, 7

noi exceed the sutii of the lengths of the reMaining,ides of the triangle
(hence the name triangle inequality). In other wog's, Jhe straight line
segment MN ts the path joining the poin4is M and M

In fa , the triangre inequality becomes a strict inequality fd(M, N) <
d(*1) +.d(li'N)] in Euclidean three-space when we introduce the

'added restriction that I, does not lie on segment MN. Hence, we can
/concludelha thelengih of segment MN is strictly less than the lengt*

/ of a brokeniline consisting of an arbitrary finite number of segments
y' wholi unioii joins the points M and N. In order to justify this conclusion

(fig. 5); we Ishall repeatedly decrease by one the number of segments in
the broken line, until, finally, pnly two segments remain. At each step
in this.process the length of the broken line will be strictly lessened until
we reach the segment MN itself. Thus, in figure 2.4 we go from the
koken line A41;11,21.3N to the broken line then to the broken
)ineML2N, and finally to the segment M N. Etch time the length of the
broken segment decreases, and thus the length of tlie original broken
,Iine isstrictly greater than the length of the seginent MN.

Table 2.1

Broken line Its length
Application of the strict

triangle inequality

MLIL2L3N d(M,

ML,L2N
ML2N
MN

d(M, 1.1)
d(M, L2)
d(M, N)

+ L2) + d(L2,L3) d(L2,'L3) +(Ls, N) > 41,2, N)
+ N)
+ d(L1,L2) d(I,2, N) d(M, L1) + d(L1, L2) > d(M, L2)

d(L2, N) d(M, L2) 4 d(L2, N) > d(M, N)



8 Distance and Its Properties in Elementary Geometry

Let us note that in this deduction we use only the stricr triangle
inequality for Evlidean space. This can be best illustraied by table 2.1.
From this table itis evident how, by replacing theliims in the second
column by esser sums using the inequalities from the third column, we
arrive at the codclusion that

+ d(1,1,1--2) 61(-1,2,4,3) -1? d(L3,111) > d(M, N).

If, in addition, we use the fact that the,length of a cprve is the linlit
of the lengths of broken segments approximating thfrcurve, it is posOble
to prove t4 following asstrtion: ,

Of all the paths Pining points M and N, thestraight line segmenr MN
has tbe smallest length.

From the triangle inequality it followt that

d(L, N) d(M, N) d(M, L) . . (2.3)

Let us emphasize that equality holds in the triangle-inequality for our
three-dimensional example if and only if the points M, N, and L fie on
the same straight line and L is located betweerl" Al and N (that is, L
lies on the segment MN).

Let us now 'examine a distance function on the sulface of a' sphgre
of radius r.

We define the distance between two points M and N on the Surrace of,
a -sphere as the length 9f the smaller arc of the great circle- pasi
through the points M and N. Let us recall that a circle lyinon te
surface of a sphere is Called a great circle if its center Ceincide wit the
center of the sphere. In other words, a great circle lie s? on the plane
passing through the points M, N, and 0 (0 being the eenterf the
sphere). It follows that each pair of distinct points M and N uniquely
determines a great circle, since three distinct points uniquely determine
a plane. The distance ds(M, N) defined in this way, Clearly satisfies
properties 1, 2, and 3. it is not diflicUlt to see further that for arbitrary
points M and N on the sphere,

ds(M, N) (2.4)

with equality holding'only fo.r points A4 and N lying at the endpoints of
a diameter of the sphere (for exafriple, the North and South Poles).



llistatwe and Its froperties In Elementary Gearetry 9

To verify the fourth distance property,
it is necessary to examine the spherical
triangle Adf...N (fig. 2.N. (The point 0 is
the center o the sphefe.)

R is e t

ds(M, , ds(L, N) = rfl

ds(L, M) . ,ry ,

where a, g, and y arC the radian measures
of ingles MON, LON, and LOM,,

. Fig. 2.5
. respecgvely. ,

,

It is well known that in such a trihedrallihngle none of the 'planar
,

'angle exceeds the surn (:if the.two other planar angles; in pErrticular; ;..
_

. I

, . , - ,-. ,

a ii ± Y A - (2.5)

Multiplying both sides of this inequality' by the radius It, We'obtain
0

ra riS + ry , ,

Or

ds(M, N) ds(M, L) + ds(L, N) , (2.6)

the ineqUality we set out to establish. \
Thus, all of the fundamental properties f ordinary distance are

satisfied by the spherical di*tnce cls(M, N). f
It is easy to show that equality holds in inequality (2.6) if and only if

two conditions are latisfred, first, that the point L is located on the
same great circle as .the points M and N; and second, that L lies
"betwen" M and Non the smaller arc of the great circle determined
by -114 and. N.

This follows from the fact that inequality (2.6) becomes an equality
only wlien equality holds in (2.5). But this can occur only when thc
trihedral angle degenezies into,a planar onethat isz.when the points
M, N, and L lie on a plane passing through the center 0 of the sphere 1.

and lay 0 L is located between rays OM and OW. But this implies that
the point L lies on the s-maller arc of the great circle joining points At
anti N. y

It is evident that the smaller arc of the great circle joining points M
and N possesses properties analogous to those of the straight line
segment in' ordinary (nonspherical Euclidean) geometry. In particular, ip

(1 ) through a pair of arbitrary distinct points there passes exactly one
such arc (with the exception of the case where the points M and N lie at
the endpoints of a diameter of the spherethat is, where they are
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antipodalin which case both arcsog any great.circle joitng M and N
are of equal length, and there are infinitely many such circles);, (2) for
any pOint t lying on,such an arc joining the points M and N, the equatiop

ds(M, + ds(L, N) = ds(M, N)

holds.
Let ulnote at this point an infportant extension of a fact proven in

iuclidean three-space. V& ordinary distance we fiave shown that the
length of any broken line joining two points M an`d /V-is greater than
the distance ITetween the.points Adind N, that is;.than the length of the
segMent MN. Here we base our reasoning oply on ttie triangle in-
equaljty and on the fact that equality holds ohl37 if the points M, L, and

op the same segrnent(with L "between" M and N). Since the
triangle-inequality is also true for the' 4istatice function vie have defined,.
on the sphere, with the ordinary line lAgment corlespondbig herF to ttie
smaller alc of, a great circle, it is apparent that an analogims assertion
is true on the sphere: If the points M and N are joined by a broken
sequence of arcs of great circles (fig. 2.6) in which. successive arcs are
joined by a common endpoint, then the total length of such a "spherical
broken line" is'greater than the distance ds(M,

We suggest that the reader writc up a full proof of this Zsertion in
analogy with the proof for ordinary distance carried out above. This
assertion can easily be generalized (using limit arguments) in the
following form: The length of the smaller arc of the great circle joining
the points ,M and N is less than the length of any other path on the
sphere connecting these points.

Thus, we have examined two examples of distance and determined
that their fundamental propertieS are the same. Auxiflary proper&s

such as (2.4) (p. 8), properties peculiar ,

to the particular example, play a much
smaller role.

Therefore, our next step will be to
take the fundamental properties of
distance (1, 2, 3, and 4) as axioms and to
study various spaces in which a distance
satisfying these axioms is defined. In
this chapter we have 'examined two
elementary examples of such spaces:
ordinary Euclidean three-space and the
surface of the sphere.Fig. 2.6

1. We inust assumc here, of course, that this sequence actually is "broken";
that is. that it does not He entirely on the smaller arc of the great circle joining the
points M and N.

1 9
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The Definition
of a'
Metric Space'

o and of Distance

,(

..
We shall begin with an explanation of 1.filiat a set is. Like the notion of

point in geometry, the concept .of set is andamental and yet difficultto
define. The word set is used in mathematics to indicate a collection of
objects called elements of these.

The concept of set has important applications in any situation where
a general property is assigned to certain objects. When these objects
fall into some class according to some sort of rule, they form a set. We
shall say that a set contains each of its elements, and that each element
of a given set is contained in it. A set is considered specified if for any
arbitrary object it is posOle to determine whether or not it is contained
in the given set.1

Let us consider, for example, the set of all integers. The silin is not
contained in this set as it is not a number but an object of an entirely
different sort. The number 77 is not contained in this set, for it is not
integral. On the other hand, the roots of the equation x2 3x + 2 = 0
are contained in this set. It is p9ssible to examine the set of all planets
of the solar system, where we Afine planets aS bodies moving around
the sun in a closed orbit and weighing no less than one t6n. The sun is
not contained in this set, since it does not (strictly) move around itself.
The earth is contained in this set. The-Seviet rocket launched,from the
earth into an orbit about the sun onJanuary 2, 1959, is also contained
in this set; it is an artillcial planet.

Let E be some set and N one of its elements. This relation it written
symbolically as N E and is read "N is an element of E." A symbolic

1. The question of what sort of method of determination is to be considered
effective" is of great interest in mathematical logic and philosophy, but it will
not concern us here. An analogous difficulty is inherent in all formal classification
systems. As an example, we may citc the biological difficulty in defining what sort
of anthropomorphic beings belorkg to the class Homo sapiens.

J
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notation of the type E = {L, M, N, . . .) is also used, where each
elethen of the set is enwnefated within the brackets. Thus, the set E
onsist g of all of the capitals of the Soviet republics, could be writtenc

(
.

symbolically as Ee = {Moscow, Kiev, Minsk, Tbilisi, Yerevan, Baku,
Riga, Talljthi, Vilnius, Tashkent, Alma-Ata, Frunzi, Ashkhabad,
pyushambe, Kishinev}. . tv ,

4If every element of a set E is at tlie 'same time an element of a set
the set E is called a subset of the set E. This is written aS E c E1("E is
contained-in E1'). For example, the s4 of all integers is a subset of the
set of all real numbers.' . .

A set E i called finite if each of its elements can beössbciated with .
(mapped to) a different element 'of 'sorni set of the form = {1, 2,
.3, . .,., n). 1n other words-, for a set E to !re finite, there, tntt xist a t

function p from E to ceucll that for each jair of elements a and b in
K,'F(a) = F(b),Implies a .;---: h. FOr evaMple, the set k of cepitals of the
Soviet republics is finite, since it is possible to enumerate this set using
the elements of the se,t E, as is evident froth table 3.1. :

Table 3.1

Moscow 1 Yerevan 5 Vilnius 9 Ashkhabad 13
Kiev 2 Baku 6 Tashkent 10 Dyushambe 14
Minsk 3 Riga 7 Alma-Ma 11 Kishinev 15
Tbilisi 4 Tallinn 8 Frunze 12

We are now in a position to give a definition of a metric space.
A metric space (E, d) is a set E in which for each pair of elements M

and N a real number d(M, N) is defined and the following properties
are satisfied:

1. d(M, N) = d(N, AP (symmetry).
2. d(M, N) 0 (nonnegativity).
3. d(M, N) 0 if and only if M and N are the same element

(nondegeneracy).
4. AM, W) d(M, L) d(L, N) for each triple (M, N, L)

elements of the seVE (triangle inequality).
We shall call the elements of the set E the points of the spac d).

A metric space is thus completely determined by the,choice of e set E
and the function dthe distance function in the space. For sake of
simplicity, we shall denote a given space by the same letter as its
corresponding set, although, in fact, the space and the set of its elements
are quite different objects. In fact, it is often possible to define more
than one distance function on a space E; each such function, along with
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the set E, determines a different metric space. In chapter'4 we shall
construct new definitions of distance (and thus new metric spaces) in,
tte itane.

In place of the four distance axioms listed above, it is possible to
introduce only two (supposing as before that d(M, N) is a real number):.

I'. d(M, N) = 0 if-and only if the points M and N kre the *pie.
04. 2'. d(M, N) d(M, + d(N,L).

First of all, these properties follow from própepties 1, 2, 3, and 4, as
property l' is property 3, and property 2' follows from the Iriangle
inequality and.condition 1.

On the other hanil, from properties l'\#nd 2' alone it is possible to
deduse all onie cortditions 5, 2, 3, and

. To prove this, jet us suppose first that in 2', L" =-M; so that

d(M,.N) 5 d(M, M) + dN, M).

By I', d(M, M) ---= 0. Therefore, d(M, N) d(N, M). By intirchang-
ing iti 2' the positions of points M and N and carrying out the analogotis
argument, we see that d(N, M) d(M, N). Trom these last two in:
equalities we get the axiom of symmetry (1):

000.0.4"011

44.

d(M, N) = d(N, M) .

Substituting M for N and N for L in 2', we get

d(M, M) d(M, N) + d(M, N) 2d(M, N)

so that, by virtue of 1',

implyiiig

0 5 2d(M, N) ,

0

which is .property 2....,.(jciannegativity). Again, using the condition .of
symmetry whkh we proved' above, we can interchange N and L in the
second term on the right side of 2' and get the triangle inequality 4.
Thus, the Vstem of axioms 1' and 2' is equivalent to the system 1, 2,3,
and 4. It is more convenient to use the latter system, however as it
gives in a clearer form the `same fundamental properties of distance.
Still, it,is interesting to note that all of these properties can be embodied

in a pair of axioms.

9 o
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From the point of view of the definition Which'wejiave introduced,
the content of the preceding chapter might bi Clescrikid as a proof that
the set of points in three-dimensional Euclideattspace along with a
distance fu-nclion defined as the length of the line segment_ joining a
given pair of points i a metris space. In the end ftif the same chapter,
we establishpd that the set of points on the surface of a sphere-, together
wiTh the distance function ds, form a metric .space.

We can get another e.xaniple of a metric space if we consider the set
of points of some surface it in three-dimensional space and define the
distance d(M, N) as the minimum length of the paths passing along
the surface ir and joining thepoints M and N.2 T1ifttst three properties
of distance are then immediately evident.

The triangle inequality can be verified in the following manner: Let
us connect the points M and L, as well as the points L and N, by a path
of the shortest possible length. Let us then connect the points M and N
using such minithal paths ML and LN. Clearly, the length of this path
cannot be less than the length of the shortest path joining M and N,
since this path is itself a path jAing M and N, and thus must be at
least as long as the shortest such path. Since the length of this path is
d(41, L) + d,(L, N),.and the length of the shortest path between M
and N is d(M, N), the desired relation follows:

4(10, N) d,(M, L) + d(L, N) . (3.1)

Let us note that on the surface of the sphere the shortest path joining
two points is the smaller arc of the great circle determined by them; this
was proved at the end of the preceding chapter. The proof was based on
the fact that the triangle inequality was obtained by an independent
argument Concerned only with the space determined by the surface of a
sphere, and on our proof that equality holds in the triangle inequality if
and only if lies "between" M and N on the smaller arc of a great
circle.

IP" It is useful to introduce the concept crf line segment in an arbitrary
metric space. We shall define the line segment joining the points M an,d
N in a metric space E to be the set Lim.N of points I. whichtsatisfy the
equality

d(M, N ) = d(A L) + d(L, (3.2)

4 is easy to see that for ordinary distance in the plane or in three-space,
the set ELN coincides with the line segment MN in the ordinary sense of

2. FOr the sake of simplicity, wc suppose that for each pair of points M and N
on a given surface i, there exists some shortest path between M and N. Using
certain assumptions concerning the properties of the surface 7r, it is possible to
prove this supposition. 0
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the term. On the sphere S with the distance function ds introduced in
chapter 2 the segment Eii.N is the smaller arc of ihe great circle joining
the points M and N if M and N do not lie on the same diameter, and the
whole sphere if the points M and N are antipodal.

We leave it for the reader to verify that with the distance 4.(M, N)
inyoduced above, the line segment &tag (if it is indeedx unique path)
is the shortest path (the so-called geodesic line) joining the points M
and N.

It is also possible 1 generalize to an arbitrary metric space E the
concept of the sphere Se,. with center M and radiiis r as the set of points
N for which d(M, N) = r.

In the plane, this notion corrk-sponds to that of a'circle; in ihree-space,
tS that of the ordinary sphere; Tor the metric (distance function) ds, to
circles on the sphere S.

As still another (trivial) example of a metric space, we take an arbi-
trary set E 4nd define tile distance between two points M and N to be
zero if they coincide, and one otherwise. It is easy to see that all of the
necessary conditions are tattsfied by this definitiom

Various other examples df metric spaces will be examined in chapter 4.
In a metric space E it is always possible to define the concept of

convergence to a limit for A sequence contained in E. Roughly speaking,
a sequence of points in the metric space E, (L1,
denoted by (Lk):..1, is said to converge to the point L E E if, beginning
with some Lk, the distance between' members of the sequence and the
point L (the limit) becomes smaller than any previously chosen positive

number.
Formally, the sequence (L,k):,., is said to converge to L if for every

positive real number e it is possible to choose a positive integer n(e)

that the condition k n(e) implies

d(L, Lk) < e.

In keeping with the ordinary notation, we write

L lim Lk .
k-4ao

It is easy to verify that for the metric space consisting of all real
numbers 11 with a metric d defined by

d(zr y) = ,

our eneral definition of limit coincides with the usual one.
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' For the metric space R3, Euclidean three-space with the usual metric,
the concept of limit just defined allows us to state dearly what wemean
by the limit of a sequence of points in three-space.

Let us note that in this case the set of points M for which d(L, M) <
forms the interior of a sphere with mtef L and radius E. A sequence of
points (LAT.. l thus converges to the point L and only if, .for each
e > 0, there exists some integer n(e) such that -all the points Lk of the
sequence with k n(e) lie in the interior of the sphere with center L and
radius E.

THEoltod. If the sequence of elements L19 L2t Lk, of the metric
space E converges to a limit E, then for each e > 0 there.'exists an integer
m(e) such .that the conditionsli k m(e) and k' m(e) imply that
d(Lk, Lk.) < e. -

Proof By the definitkin of limit, it is possisl* to choose an integer
n(E/2) such that k a n(E12) and k' n(E12) willVinply the inequalities

d(Lk, L) < -
'

d(Lk., L) < A
2

But, by the triangle inequality and the axiom .of symmetry,
,

d(Lk,L,e) s d(Lk, L) + d(L, Lk') d(Lk,
E Ed(Lk,,L) < +

In other words, if we let m(c)- n(e12), then foal k m(e)ltk' m(e),
the following inequality hol8s:

r
4

d(Lk, Lk) < E .

This proves the theorem. To paraphrase slightly, we have proved that
if elements of a sequence become arbitrartly "c ." to a given limit,
they also become arbitrarily -elose7 to edch .r.

.
.

If in the space E the converse of the above theorem holds, then E is
....

called complete.

It is convenient to give the definition of a complete metric space in
the following form: A sequence of points (L0,7.1 contained in the
metric space E is said to be a Cauchy sequence if for each E > 0, there
exists an integer ni(E) such that k _?._ m(E) and k` .. m( .implies

d(Lk, Lk,) < E

9 t

I.
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The metric space E is called complete if each Cauchy sequence in E
converges to a point of*. .

The real line, the plane, and thiee-space with their usual metrics are
Complete Tetrie spaces.

The question of whether or not a given metric space is complete is
fundamental to the application of these, concepts in mathematical
analysis, but we shall not con'6ern ourselves with this question at the
present time.'

Two metric spaces are said to be isometric if it is possible to set up a
one-to-one coriespondence between them.such thafthe ctistance between
a pair of points in qne of the.spaces is the same as that between the
corresponding tioints in the other space. From the point of view qf the
theory of metric spaces, fwo isometric spams may be considered'

,

identical.
As an example, let the segce E be the plane along with the ordinary

metric, and the space E` theiet of complex _numbers z, with a metric sif
defined by the formula .

d;(z, z1) lz zgl .

The usual method of picturing.the complex numbers as points on the
plane establishes the existence of a one-to-one correspondence between
the two spaces. It is easy to check that this correspondence is an
isometry, since, if we set z = x + yi and ,z2 x1 + y,i, the quantity

lz. zil V.(x x1)2 + (y y2)2

is equal to the distance between the cdrresponding points of the plane.
The definitions of metric space and of distance given here are not the

most general _encountered in mathematics. There are various generaliza-
tions ot this.concept. For instance, it would seem possible to assign
infinite distance to sonie pairs of points, while.still preserving all of the

IF properties of distance4this generalization, as we shall see in chapter 9,
is not particularly interdsting. In many mathematical problems it is

necessary to deal with a. me/tie in which the property of symmetry is
. lacking. We shall study the properties of such a metric in chapter 9. In

the theory of relativity, it is necessary to considek a distance function
which can take on even imaginary values. The properties of such a
distance are quite uni4ue, btit we shall not touch upon them in this
book.

3. The notion of completeness is of most importance to mathematical analysis
when applied to metric spaces whose points aR functions. See, for example, the
definition of the space C at thi: end of chapter 7.



Some Examples of
Metric Spaces,

In this chapter we shall look at a number of examples of Tinetric
spaces with r$latively unusual metrics.

Many interesting metric spaces on the plane arise out of considers- 1
tion of differently defined distance functions. We shall represent the
points of the plane in this discussion with the aid of a coordinate system
chosen once and for all so that each point of the plane is given by an
ordered pair of coordinates (x, y). It will be convgnient to denote a
point of the plane as M = (x, y)..

The metric spaCe 1 results when we define the distance between,the
points M (x, y) and N (x1, yi) by the formula

d1(M, AT") ---- xii I.Y Yii (4.1)

Figure 2.2 (p. 5) shows that d1(M, N) is the sum of the lengths of the
1 legs of the triangle MLN, in which MN is the hypotenuse and the legs
ML and LN are parallel to the axes of the coordinate s)4tim. Since the
length of the hypotenuse cannot exceed the sum of the lengths of the
legs, we have always

d(M,N) CM, N), 0.2)

where d(M, N) is the usual 'planar distance. The inequality (4.2)
becomes.an equality Only when the line segment MN is either horizontal
or verticalthat is, when it is parallel to one of the coordinate axes.

If in inequality (4.2) we substitute the algebraic expressions for the
correspOndifig distance functions (4.1) and (2.2), we get the inequality

AAX X1)2 (y yi)2 5, ix lY Yil
cr.

Setting xi41. yi -= 0, we get the simple but important inequality

Vx2 + y2 + Iy .

18

(4.3)

4
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Axioms 1, 2, and 3 are obviously satisfied by the metric dl(M, N). In
order to verify that axiom 4 is also satisfied, we examine three points

(x, y), N (x1, yi), and L = (x2, y2) and write the elementary
identity. .

lx xif+ ly.yI Ix xa xa xjI + 1Y Y2 + Y2 Y11 '
(4.4)

Using the .fact that for arbitrary rear numbers a and b, la + bi
'al r Ibi, from (4.4), we get the inequality

lx xil + ly yll Ix x21 + x-11 + ly y2I Iy2

which is the desired relation

N) L) + d1(L, N) (4.5)

And so the triangle inequality holds for the space
The distance d1(M, N) can be interpreted as the length of :minimal

path traversed by a particle moving from M to N that is constrained to
move only along line segments parallel to the coordinate axes. Figure
4.1 makes it evident that there are many (in fact, infinitel3/ many) suet;
minimal paths.

It is not hard to show thatAhis statement is equivalent to saying that
in the space !there exist infinitely many distinct line segments1 joining
thF points AV and N (except in the case where the points M and N are
situated on the same vertical or horizontal line); for a line segm,ent in
the space / joining the points M and N is any broken line joining M and
N which consists only of Vertical and horizontal lines which do not
intersect any vertical or horizontal line more than once. (We suggest
that the reader prove this as an exercise.)

Fig. 4.1 Fig. 4.2

1. In the sense of the definition introduced in Chapter 3.
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One gets a still more natural picture by considering the metric space
C consisting of all the lattice points of some rectangular lattice in the
plane (fig. 4.2) with the metric definedby Nrmula (4.1). Points of4his
space can be viewed as the intersections of the streets of a perfectly
planned city. The distance CM, N) is in this case the length of the
shortest path which one can take along the streets of the city from the
intersection M to the intersection N, without taking any shortcuts
thmugh houses.

In the following example, the space C will consist of points in the
plane with the metric d2 defined,by the fohnula

N) = max (ix x11, iy yd) , (4.6)

where M has coordinates (x, y) and N has coordinates (x1, yi). Geo-
metrically (fig. 2.2), the distance dce(M, N) can be interpreted as the
length of the larger leg of the triitngle MLN. As this length is always lesi*
than that of the hypotenuse (or equal to it in the ease of a degenerate
triangle), we have

d(M, N) d(M, N), (4.7)

where d , N) is the usual planar distance. Again; setting x1
we get the algebraic inequality

max (14 Lid)

= yi 0,

(4.8)

For the mctric 40, axioms I, 2, a are again quite 'evident. To
prove the triangle inequality, suppose we have three arbitrary points
M = (x, y), N = (x1, yr), and L = (x2, y2). We may assume that

x,1 ly y11.3 This means that

N) = rnàx(jx xd, 1y yil) =

= xii .

Consequently,

4,(M, N) lx x-21. + 1x2 (4.9)

2. The meaning of the symbol co will be made dear on page 22.
3. We can make this assumption without loss of generality, for in the opposite

case (Ix xii < iy yii), we interchange the roles of the x and y coordinates
and carry out the same proof.
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Moreover, it is evident that

ix x21 5 max (1x x21, yal) = ,

1x2 x11 max (Ix, xd, iy, yd) = d(L, N) .

(4.10)

Combining (4.9) and (4.10), we get

d.(M, N) do,(M, L) + N) (4.p)

the desired result.
We have already noted that in an arbitrary-metric space it is possible

to introduce the concept of a sphere of radius r with center M, defined
as the set of points N for which

Fig. 4.3

d(M, N) = r . (4.12)

,4f the distance function d is the
ordinary distance on the plane, this
sphele is just the circle with center M
And radius r.

For three-space with the ordinary
metric, the sphere defined by (4.12) is
just the ordinary sphere with center M
and radius r.

In the space the sphere is a square
with center M and diagonals of length
2r parallel to the coordinate axes.

In the space C the sphere is also a
square with center M, but with sides of length 2r parallel to the co-
ordinate axes. In figure 4.3 we have pictured the sphere of radius r in
the spaces / and C and in the usual sense. The proof that spheres in /
and C have the form indicated above is left as an exercise for the reader.

An interesting class of metric spaces is obtained when we define a
metric dp on the plane by the formula

4(M, N) Ix xj + ly y1IP . (4.13)

The spaces so obtained are called lp spaces.
Axioms 1, 2, and 3 for a metriC dp are obvious. Thst dangle inequality

follows from Minkowski's inequality:4

+ a + lb + b + bI + + b. (4.44)
4. A proof of Minkowsky's inequality can be fount in Geoffrey H. Hardy,

John E. Littlewood, and George Polya, Inequalities (Ca bridge: The University
Press, 1934).

3
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which is true for p 1, if for the points M (x, y),
L = (x2, Y2), we take

(x1, ym), and

a x x2 ; x2 ; y2 ; b]. = Y9 Yl

For p < 1, the triangle inequality is not true.; the inequality in (4.14) is
reversed.

It is easy to see that for p .1- 1 the distance dp(M, N) = CM, N),
whereas for p = 2 the distance dp(M, N) is just the usual distance
d(M, N). Thus, the space / coincides with the space 12, and tile plane
with the usual metric is the space 12.

We shall now show that the .distance dp(M, N) conv s to the
distance dco(M, N) as p oo.

Let us first examine the case Ix xil > 1y yd. Then (1,c (M, N) =
1x xii. On the other hand, transforming (4.13), we have

dp(M, N) = xij jilt +

Noticing that for p > 1,
4..

Y Yi
x

Izt

and that the quantity 1(Y y1)K-X x1)1P + 0 -as p oo (since
Ix x,1 > ly y and, thus, I y yi111x x21 = 1(y y2)I
(x x < 1), we get

Using (4.15), we see that

urn dp(M, N) = Ix xj = dc,(M, N) (4.16)

Analogously, for Ix x11 < ly 1, we obtain

lirn dv(M, N) = dec(M, N (4.17)
Ykalb

v
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Finally, let us examine the case lx xii = i y y. Then

N) = lx .

Since Hifi = 1, we have in this case

lim N) = lx x1 = rco(M, N) . (4,18)

And so in all three cases, by (4.16), (4.17), and (4.18), we get

Jim 4,(M, N) = dco(M, N) ,
P

(4.19)

the desired result.
Consequently, it is reasonable to denote the space C by the symbol

ic, since the distance dco(M, N) in this space is the limit of the distances
dp(M, N) as p approaches infinity. -

Figure 4.4 depicts 1, spheres (all
having the same center M) for various
values of p. The 4, metric spaces arc also
called Minkowski spaces. In chapter 7
we shall examine multidimensional
Minkowski spaces.

We leave it to the reader to formulate
a simple definition of line segment for 4,
spaces. 'R 2 We can obtain an interesting class of

N2 metric spaces in the plane by defining
distance as the minimum time required

Fig. 4.4 to travel from M to N with some given
restrictions on.the paths which may be

taken.
Making no restrictions, we can obtain the usual distance if the ,

shortest path from M to N is taken by a point moving with a constant
velocity of one.

We can obtain the metric space 1 if we require this point to move again
with constant velocity but only &on& line segments parallel to the
coordinate axes.

But we get a new example if (see fig. 4.5) we consider the map of the
Moscow metropNitan area and suppose that a traveler may go from
point M to point N in the following manner.
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If the same subway station is the nearest one.to both points, the
shortest route is on foot. If this is not the case, the traveler walks (by
the shortest route) to the station closest to the point of departure M,
rides by the shortest route to the station closest to the point N, and from
thercsalks to N. If two or more subway stations' are equally close to M
or N, the route for which the riding time will be least is chosen. Figure 4.5
flows two pairs of points,-(M, N) and (M1, N1); to go from M to N one

, st walk, whereas to go from M1 to N1 one must flike a subway. Let
us suppose that someone living between the Rizhskii and Botanic
stations wants w go somewhere in the neighborhood of the Zemlyanii
Val; then it would be necessary to get on at the Botanic station and go
to either the Lermontov station or the Kursk station. It is easy to see
that the metric dt(M, N) defined in this way is, ingeneral, different from
the usual geometric distance. In fact, if the point Q is situated near a
heloport (either Dynamo or Aeroport), the point P near Volokolamskii
Highway, and the point R near Valovaya Street (near the Paveletskii
subway station) as in figure 4.5, then in the sense of ordinary distance
the point P is somewhat closer to the point Q than is R:

d(P, Q) < d(Q, R) .

It is evident from figure 4.5, however, that

d(P, Q) > di(Q, R) .

33
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Actually, if one cannot takc4-* taxi, it is possible to travel from the
heloport ro Valovaya Street in less time than it takes to go from the
heloport to Volokolarnj.ki Hig My/ay.

,For thc metric irit, 5iom 1 (the axiom of symmetry) is nontrivial,.

25

The equality

dt(M, N) = 4(N, M)

indicates that the time spent in going from M.to N as quickly aspossibIe
is the same as that spent going from N to M. This is more or less true if
one uses only the subway or travels only on foot. But if taxis are allowed,

. this is no longertrue; it is one thing to try to get a taxi at a taki stand
and an entirely different thing to tiy to get one in some remote neighbor:.
ood or at the Kursk station when the trains are coming in.
Axioms 2 and 3 for the metric d are evident. The reader will have no

t oul?le proving the triangle inequality (axiom 4) for himself if he
recallpthe.proof of this axiom for the metric d in chapter 3.

In further investigation into the properties of metric spaces, it will be
useful to introduce the concept of a Dirichlet region. Let E be a metric
space and L1, L2, . ., Lk points in E. We define the Dirichlet region of
the point LI to be the set of all Points N for which

d(Lb d(Li, N) (4.20)

for all j I, and denote this set by D. In other words, the Dirichlet
region D, is the set of points which are at least as close.to the point LI
as to any of the other given points L,. It is clear that the Dirichlet region
is determined by the choice of the points LI, L2, , , Lk and of the given
point L. We shall now look at examples of Dirichlet regions in various
metric spaces.

Fig. 4.6 Fig. 4.7

3 4
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(

Let us first consider the plane with the usual metric da and two points
Li and L2. We join these points by the line segment L1L,.2 (fig. 4.6) and
draw a perpendicular through its midpoint. This perpendicular divides
the plane into two closed half-planes, which are the Dirichlet regiaza.f.o;
the points L, and L2.

Let us now consider three points L1, L2, and La in the plane, again
with thc usual metyic.In figure 4.7 we hay; constructed the Dirichlet
regions for these three points and marked them off with heavy lines.
The method of construction is clear from the diagram.

Let us now examine two points Li and LI in the plane with the metric
d,(M, N) (that is, in the space I). For t.111.41rpke of clarity, wi shall again
visualize a city divided into squares. c Dirichlet regions consist of
those intersections from which the route through the city to L1 will be
shorter than that to L2 and vice versa. These regions are marked oft in
figure 4.8 by a heavy linc. Figure 4.9 shows the corresponding partition
for the space C. We suggest that the reader try to derive the general rule
for constructing the Dirichlet regions for n points in the spaces / and C
by examining Dirichlet regions for two points and for three points.

Fig. 4.8 Fig. 4.9

Turning again to figure 4.5, we see that if we partition the space into
Dirichlet regions for the pair of points P and R, then the point Q falls
into the Dirichlet region of the point R. We suggest that the reader draw
this partition into Dirichlet regions. It is important to note that this
partition differs greatly from those in figures 4.6, 4.8, and 4.9.



The Space of
Information!

When we speak of communication, we usually mean some sort of
transmission of information. In this sense, communication appears in
the form of books, letters, telegrams, musical pieces (recorded or
written in musical notation), computer cards, signals directing the
flight and landing of space ships, molecules of deoxyribonucleic acid
(DNA),which transmit genetic information from parents to offspring,

A and so on.
Questions concerning the transmission and codification of informa-

tion are examined in the theory of information.' In the study of this
theory, methods for determining the "quantity of information" con-
tained in a given message are developed; this' quantity" can itself be
encoded as information. We frequently encounter this situation in our
daily lives; in composing a telegram we try to use the minimum number
of words possible without destroying the meaning (that is, while
preserving the quantity of information).

The revetse situation arises when, in an examination or in a seminar,
a poorly prepared student amplifies his message, trying to express the
small amount of information which he has on his topic in a sufficiently
impressive quantity of words.

A surplus of communication relative to the quantity of information to
be transmitted is, however, not always harmful. Such redundancy can
be useful when interference arises in the transmission of information.

For example, when we have a bad connection on the telephone, we
are forced to repeat individual words. In conveying strange or difficult

1. A good reference for an account of information theory is A. M. Yaglom and
I. M. Yaglom; Atroyattaat' i informarsiya [Probability and Informationnmoscow:
State Publishift House of Physics and Mathematics Literature, 1960. A transla-
tion of this work will be included in the Survey of Recemt East European Mathe-
matical Literature of the University of Chicago.

27



28 The Space of Information

names, we use the following alphabetical device: In communicating the
name "Pavsikakii" over the telephone, for example, we might say,
"Peter, Anne, Viet 6r, Susan, Irene, Karen, Albert, Kay, Ivan, Ida."

In this chapter and in the next we shall study methods of error-
stabilizing codification of information, .witshout concerning ourselves
with specific questions relating to the theory of information. ilon other
words, we shall study methods of writing down messages that allow us
to correct automatically any errors that arise, provided that they are not
too numerous. These methods are closely connected with the' question

-"of the possibility of defining a metric on the so-called spacyf in-
formation.

The idea of these methods is.something we make use of frequently in
everyday life for instance, in reading boo,ks with printing errors and
receiving telegrams with mistakes. If we read the word "sauce pin" in
a book, we need not look in any "dictionary of mistakes" ,in order to
guess it's meaning,,There is very little.chance that the autha meant the
word "telegraph" here. For if he did, we'vwfuld be dealing with eight
misprints in a row, whereas if the word "sauce pan" was meant, there
would be only one misprint,2

Still, there are curious examples where a totally different word can
arise from a mistake in only onsjetter. For example, the Russian word
" korona" (" crown") couldbe mittakenly written as " korova " ("cow")
or as "vorona" ("crow").

Indeed, a well-known anecdote is based on this situation. A Russian
provincial newspaper is said to have printed this sentence in an article
about the coronation of Nicholas II: "The Metropolitan placed the
crow on His Highness's head," The next day a correction was published:
"The Metropolitan placed the cow on His Highness's head."

Clearly, even here it is quite easy to determine the true meaning of the
message from the context.

Analogously, a misprint a musical composition can frequently be
'discovered because of its false sound and can be corrected by the laws
of harmony.

One must mention that errors can arise not ouly in trahsmission of
information, but also during its storage, for example, in the memory of
an electronic computer. The problem of discovering the correct message
is the same for errors occurring during the storage of the message as for
those arising during transmission.

Every type of messageuis written with the aid of some set of symbols.
The set of symbols used forms an alphabet 21. Wc assume that this

2. Of course, sometimes there are more probable strings of misprints, arising
from a typist's or typesetter's misunderstanding of the sense of certain words.

3 fr7
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alphabet is given beforehand and consists of a finite number of symbols.
For example, the alphabet might consist of all Russian letters, a space,
and punctuatio'n marks. Using this alphabet, it is possible to writeany
arbitrary Russian sentence. Another example of an alphabet is the set
of all decimal digits, algebraic symbols, punctuation marks, and Latin
and Greek letters. Using such an alphabet,one can write down the most
divetse of mathematical formulas.

Still another example is the binary alphabeta set of two symbols,
212 = {0, 1). Using such an alphabet, we can write any number in the
binary system.

It is easily verified that any whole number x can be written in the
form

X = en24 + - 12" + ei2 Po (5.1)

where the quantities E, take on a value of 0 or 1.
Thus, to transmit information about an integer x, it suffices to trans-

mit a finite sequence of symbols of the Alphabet 2- RPe e-s- lf 819 so.

In order to separate the information about two different humbers, it is
necessary. either to introduce a special symbol for the end of a number
or to transmit only sequences of some standard length.3

The latter method is the one actually used on computers, where the
binary sequences to be stored in manory usually have a standard length
corresponding to the number of "memory cells" available in the
machine. In computers now being manufactured, however, this principle
is being departed from more and more, with memories of variable
length being used.

Formula (5.1) is analogous to the well-known formula

x (410' + ac_110"1 + + + ao (5.2)

where a, ao are the digits in the decimal representation of
the number x. It is easy to generialize equality,(5.1) to numbers which
are not integers exactly as is done for decimal fractions.

Let us determine the connection between the number n and the value
of x in (5.1). Clearly, if the leading coefficient is equal to zero, the leading
terM can be discarded; this process can be carried out repeatedly until

3. There are more complicated methods for separating the meaningful units
(words) in an arbitrary alphabet. See, for example, the article by A. A. Sardinas

. and George Patterson in Kiberneticheskil sbornik [Journal of Cybcrnetics], no. 3,
Moscow, 1961.
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I. Switching all terms except the first, from the right side to the
left, we get

x 2' 6121 60 6.2* = .

This maes it clear that

x

or

n log2 x (5.3)

On the other hand, the following inequality holds:

6.2* + + es 2214-2 t + C121 c0

2'` 2.-, + 2.-2 +--+ 21+ 1.

From this relation and from (5.1), it follows that

or

which can also bc written

x

n + 1 > log2 x " (5.4)

Combining (5.3) and (5.4), we obtain the inequality

n log2 x < n 1 . (5.5)

tThe inequality (5.5) can be written as

n = [log2 xl

that is, n is equal to the greatest integer in log2 x.4 The above statement
leads us to conclude that the number of binary symbols required to
code all integers in the range Osxsa is

1 + [log2 a] = n . (5.6)

4. By the greatest integer in the number a wc m\4pthe largest integer which is
less than or equal to a. The greatest integer in a is written [a]; for example,
[If] = 3.
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The one is included here becatise then are it? + 1 terms in-the sequence

819.9 81t -19 9 812 80.
With the aid of the binary ,alphabet 212, any type of information ;

(numbers, commands, logical relations, and so forth) can be written
into the memories of computers.5

.

By a message in a given alphabet 21 we shall mean a finite sequence of
symbols from this alphabet. It is sometimes convepient to diyide a
message into standard submessages, (vhich are called words.

Generally speaking, it is possible to define infinite alphabets and
messages, but we shall not consider them here.

A message written in one alphabet can sometimes 1r translated into
another. For example, as we have already seep, an intner represented
by its decimal digits can also be written in the binary alphabet. One of
the important examples of such translation is the following: Suppose
that we are given an al habet 2i. We define a new alphabet 21' to be the .
set of all words of h less than or equal to some positive integer k
which atn be fori using alphabet 21 It is clear that every message in
alphabet 21 can be broken up Alto a sequence of words of length not
greater than k, which means that it can be recoded in the new alphabet
et'

similar idea could be introduced for messages in the Russian
language, written in the Russian alphabet suppOnented by a space and
punctuation marks. Here it would be necessary to take a complete word
list of the ussian language and to assign to each word in it a hieroglyph'
(using, for e ple, a combination of Chinese and Egyptian writing).
If one could, 1 ddition, introduce hieroglyphs in such a way that it
would be possible to distinguish cases and conjugations of verbs, then
one could recode any message in the Russian language.

In place of hieroglyphs one might use decimal numbers of six digits.
The first five digits of such numbers would suffice for coding words:5
the ixth digit could be used for coding grammatical signs.

Here we have for ilIçrst time stumbled upon the important notion
of coding 41d recoding Iessages. By codification we mean, generally
speaking, the formation in a given alphabet of messages containing
given information or the translation of a message written in one alpha-
bet into a message written in another. In this respect, "one-to-one"
translations, that is, cases in ,which it is possible to transform the
information of a message from one language to another in an essentially
unique way, are of most interest. It is easy to see that the translation of

5. On this point, see Donald F. Knuth, The Art of Computer Programming,
vol. 1 (Reading, Mass.: Addison-Wesley, 1969).

6. As one could easily make do with a vocabulary of 100,000 Russian words.

4

A



32 The Space of Information

Russian sentences from the alphabetical to the hieroglyphic form has
this property.

In practice, this method of encoding messages by words is used along
with a method of decoding by means of a word alphabet.

The reverse situation also occurs, in which a symbol from a given
alphabet 21 is coded in the form:of a word written in a_simpler alphabet

For example, suppose an alphabet consists of three symbols L., , *)
(dot, dash, end of letter). Then an arbitrary letter er punctuation mark
can be written in this Morse code (see table 5.1) as a word of at most
seven symbols from the alphabet QV.

Table 5.1
The Morse Alphabet

Morse Latin Morse Latin Letters
Symbols Letters Symbols (and Arabic Numerals)

A V

X
Y

0 2
3

1 4 .
5

67. 7

8.N 9
0 0
P , (comma)

, (period)
; (semicolon)
: (colon)
? (question mark)

U ! (exclamation point)

The marks "*" and "**" for the end of a letter and the end of a
word, respectively, are coded by intervals of time and, therefore,
are not ineluded'iirthe table. _ _ _

In this way, English words can be written in the Morse alphabet
instead of the-Latin alphabet.

41
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Example. The English sentence, "What is distance?" can be written
as follows in the Morse alphabet:

* . . * * ** . **

* * . * * * * * . . **

As it happens (fortunately for Computer technology), any message in
an arbitrary finite alphabet can be recoded in the binary alphabet
212 = {0, 1}.

Any nonnegative integer can be represented in the form of equation
. (5.1); that is, in the 'binary system and, therefore, as a word in the

binary alphabet.
If we consider only integers in some range 0 x a, the sequence

of binary symbols for x sieo can have no more than
1 + [log2 a] terms (5.6).

Now, if we have- an arbitrary finite .alphabet 21 consisting of m
symbols, we can assign to each symbol an integer between 0 and m 1

inclusive. And so, to each symbol of the alphabet 21 it is possible to
assign a binary word, corresponding, in accordance wjth (5.1), to the
number assoCiated with that symbol. Moreover, it is possible to make
do with words of length n, where

log2 (m I) < n ,1 + log2 (m 1) . (5.7)

In this way it is possible in the case of any finite alphabet to limit
oneself to words in the binary alphabet. Modern telegraphy employs an
international telegraphic code for Russian and Latin letters, numerals,
and punctuation marks. As an example, we introduce in table 5.2 the
five-symbol codeiused in tellegraphic apparatus of type CT-35.7

The lait five combinations are read in the same way in all registers.
The symbols of the registers indicate that after the appearance of, let

us say, the symbols of the Latin register, all binary five-symbol com-.
binations are read as Latin letters. In order to switch to Russian letters,
one must insert the symbol for the Aussian register.

Example. Let us write the following sentence in our telegraph code;
"The name Shakespeare is written /././excnup in Russian."

7. At present the so-called "intercational telegraphic code No. 2" is being used
more and more. The following Lvd4a variation of the "international telegraph al-
phabet No.1" for multiplex systems, is based on an analogous principle.

1



10000`01011
00101 11000
10001 01101
00010 .01100
10001 00001
01100 10000

Table 5.2 -
international Telegraphic Code for Russian and

Latin Letters

Latin Numerical
Register Register

1

8

e
Register Combination

A

1'1

A -
3

JI

II
114

bI
Si

10000
00110
01101
01010
11110
01000
11101
11001
01100
10010
10011
11011
01011
01111
11100
11000
00111
00101
10101
10100
01110
11010
10110
19111
01001
00100
00011
11111
00010
00001
10001
00000

V

I

X

2

111

6

5

4
3
+

Russian Register
Numerical Register
Latin Register
blank
bell

Russian
Register

Code
Combination

A 10000
00110
01101

1'1 01010
11110
01000

A - 11101
3 11001

01100
10010
10011

JI 11011
01011
01111
11100
11000
00111
00101
10101
10100
01110
11010

II 10110
114 19111

01001
bI 00100
Si 00011

11111
00010
00001
10001
00000

t

01000

01000

00111

14111 f

01100

01111
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In the coded text the symbols for the registers are in heavy print, for
it is necessary to notice them in order to be able to chalge from Russian
to English, to arrange the punctuation marks, and to-w le down the
letter "in." The latter is placed in the numerical regist since there are
more Russian than Latin letters.

A five-digit binary 'Icode suffices for the rep - .tion oearl Latin (or
Russian) letters. Such a cede is givenin table 5.

Table 5.3

a 00000
b 00001
c 000.10

h 00111
i 01000
j 01001

a 01110
p 01111
q 10000

d 00011 k 01010 r 10001

c 00100 1 01011 s 10010
f 00101 m 01100 t 10011

g 00110 n 01 W1

u 10100 1
v 10101
w 10110
x 10111
y 11000
z 11001

The sentence "The length of tlie hypotenuse is less than the sum of the
lengths of the two.legs" can be coded as follows: V.

10011 00111 00100 11010 01011 00100 01101 00110 10011

00111 11010 01110 00101 11010 10011 00111, 00100 11010

00111 n000 on 11 01110 Noon ooloo 01101 10100 loolo
moo nolo moo loolo 'limo 01011 ooloo loolo loom
nolo 10011 00111 00000 01101 11010 10011 00111 00100

11010 10010 10100 01100 11010 01110 00101 11010 10011

00111 00100 11010 01011 00100 01101 00110 loon Dom
loom nolo 01 no 00101 nolo loon °ow ooloo 11010

loon lonw on 10 now won moo ()ono 10010

Note that the separation of the five-digit strings is used here only for
ease of reading and that the blank entry 11010 has been intoduced
as a silace symbol between words. For storage of such a message in the
memory of a computer or for transmission by means of telegraph, no
symbols but zero and one are needed.

To illustrate this point, let us suppose that the above text were written
as a continuous string of zeros and ones. Then the first line (excluding
space symbols) would read:

100110011100100010110010001

We could initially separate the first five symbols 10011 and write
them down. Theauwe could separate the immaately following, five
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symbols 0011 1 and-write them down. In this way we couId generate the
complete message by inserting spaces between strings (on.the subject of
separating words in messages, see note 3 on page 29).

We shall now introduce the idea of a space of communication. Let us
consider an arbitrary alphabet° 21 and the set of messages consisting of
exactly n symbols from the alphabet 21.

We define the distance d(e, n) between two messages e and 77 to be thc
number of positions in which the messages e and 71 have different
spboks. The metric space E(n, 21) obtained in this way is called the
n-dimensional space of communication, over the alphabet 21.

Example 4 91 is the Latin alphabet, n = 5. Let e = build; 77 = guilt.
All letters bjt the first and fifth coincide, and so d(e, n) = 2.

Example 2..6 212 is the binary alphabet, n = 12 -and 000110101010;
71 = 010101101011. The second, fifth, sixth, and- twelfth binary digits
do not coincide, and so d(4i 77) --- 4.

,Note, that at is possible to compare any words of length, not greater
than n if it is agrised that words of less than n letters are augmented by a
previously choserdetter'until they are of length,ii (usually 0 in the binary
alphaget).

Let us verify that thc metric d defined above satisfies all of thc
necessary axioms.

The aNiom of symmetry d(e,n) d(77, e) follows from the definition,
vf.in which the roles of e and '11are_,interchangeable. It is' obvious that

,) >_ 0, and that d(e, 71) = 0 Only if all of the corresponding symbols
in the messages and n coincidethat is, if the words eand areahe
same.

The triangle, inequality is verified as follows: Assume that we are
given three words 6, 71, and i of length n. Let us suppose that in the kth
position, the symbols of words 6 and coincide, as well as the symbols
of words t and 71. Then. it is clear that for this position the symbols of
'words and .77 also coincide.

To be concise, let ek be the kth symbol of message 6; the kth
symbol of message and TN the kth symbol of message 7). Then if

and = nk. Taking the contrapositive, if ek nk,

then either ek or 6c
Thus, words and ncan have different symbols only in those positions

where either the symbols orwords 6 and or those of words and .r) do
not coincide. This indicates that the number of symbols of 6 and
which diger does not exceed the sum of the number of noncoincident

8. In this situation it is not even essential that the alphabet 21 be finite.
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symbols of e and / and those of / and n. But the number of symbols at
which e and / do not cbincide plus the number at which / and 7/ do not
coincide is dU, + d(, 77). In other worts,

d(, 77) s d(e, + d(, 71) ,

the triangle inequality.

Example. In the space E(5, 20, where 21 is the Latin alphab'et, let
= trace, n = truce, and / = trUnk. Clearly, d(6, 1, cl(i, = 3,

and AL 2; and so

(5.8)

du, o du, 0 + d(L n)

With the aid of this metric, it is possible to formulate a general
principle for the construction of codes which allows us to correct
mistakes automatically. Tliis principle was first introduced by P.
Hernming.9 We shall examine it in the rollowing chapter.

9. See the article by P. Hemming in the collected translations Kody s obna-
ruzireniem i isprovieniem oshibok (Codes and the Detection and Correction of
Errors), IL, Moscow, 1956.
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In this chapter we shall examine the space of communication E(n, it);

that is, the space of mes.sages of length n foamed in the alphabet gt. As

we have already seen, it is possible to limit oneselfexclusively to binary

messages (messages in the alphabet 212). All of our interesting exam les

will come from this alphabet.
Let us consider the following general scheme for the transmission of

information (fig. 6.1). Messages emanating from some scone are

recoded into an error-stabilizing code by means of a coding device.

Then these messages are transmitted along connecting lines, during

which time the messages might become distorted. Finally, the messages

are corrected at the receiving end by a decoclingdevice and decoded into

the initial code if necessary.

Dictiona y

Sdurce of Coding Connectin Decoding

information device line device Storage

Fig. 6.1

The automatic detection and correction of errors during the storage

of information in machine memory occurs in a completely analogous

manner.
As information is stored in the memory, it is translated into an error-

-stabilizing_c.oda._When the message is read, the corresponding decoding

takes place, along with the correction of errors admitted during storage.

By periodically reading, decodinN correcting, recoding, and storing

38,
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Symbols

Source of
information
(input)Coding

device

Memory
Processed
information

Read-out Decod ng

device
(0 Lit lit

Dictionary

Fig. 6.2

39u.'

information, we can be sure of its accuracy. In particular, if we choose
a peiriod of time T during which not too many distortions of the stored
infamation can arise, and repeat the above process no less frequently
than once per period T of time, the accuracy of the stored information
will be guaranteed. In other words,. T must be Chosen so small that the
distance d((, e) between the stored message e and the message t that
is read cannot become toogreat.

We now choaae a subset Nk of E(n, 21) with the property that for any
two distinct elements and 71 of Nk,

n) k . (6.1)

We shall call the set isrfr, the set of intelligible words. Let us suppose
that during the,transmission and storage of the intelligible word e e Nk,

errors (witii I k 1) are-admittedthat is, I symbols of the word
6 are incorrectly given. This incorrectly transmitted word we shall
denote as 6'. By the definition of our metric, d(e, e') 1. Clearly, the
word e' is not intelligible, for if it were, d(e, e') would be greater than
1by (6.1).

Thus, we may check the transmitted word e' and see that it is not
intelligible (it can, for example, be compared with all the words of Alr
in figures 6.1 and 6.2 this possibility is guaranteed by the availability of
a dictionary). We would then discover that an error had been made.
While the word is in the machine memory, such a process of checking
can take place periodically, where we choose the pericid T to satisfy the
condition that during the time T there is little chance for more than
k 1 errors to arise in a single-word. Thus, we already have a general
principle for the detection of errors.
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But wc can do even more; we can actually correct the mistakes that
arise. For this purpose. we shall assume that the number of mistakes
I s (k 1)12. Let 7i be an arbitrary intelligible word cjistinct from e,
and 6' as before, an incorrectly transmitted word.

Applying the triangle inequality,

77) + d(6, , 7)) .

Setting d(6, 6') = 1, and using (6.1),

k I + d(6', 11) ,

From this it is clear that

d(r , 71) k I k
k 1 k 1

2
(6.2)

since I 5 (k 1)12.

From the assumption that I 5 (k 1)/2 and from (6.2), we conclude
that the incorrect word e' is at most (k 1)/2 away from' the correct
word e and at least as far as (k 1)/2 from any other intelligitile word
i. fn other words, we find that the intelligible word 6 is nearest to 6',
and thus establish the cOrrect message.

The above discussion seems to suggest the usefulness of determining
the Dirichlet region of each intelligible word. For each word e' to be
corrected, it must he determined to which Dirichlet region the message
belongs. The intelligible word determining this Dirichlet -region is
considered the correct word.

Here is Where Hemming's remarkable idea comes in. This idea is
bakd on the fact that for the purposes of transmission, one' need not
use all possible combin,ations of symbols from the alphabet, but only
some set of intelligible words. Since in English only certain combinations
of letters are used as intelligible words, the sense of distorted words can
frequently be established without the usc of additional codings. This has
already been illustrated.

We shall now ea amine the means by which error-stabilizing codes arc
coustructed in practice; 'in 'particular, the construction of sets of
intelligible words Nk C-; E(n , All of our examples will come from
the binary alphabet Z2. As we have already seen, such a condition is not
a limitation, for it is possible to write any message in the binvy
alphabet.

I 9 111
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The problem of error-stabilizing codification can be formulated in
the following way. Suppose that we have the space of,s-symbol binary
messages E(s, 26). We must place in correspondence with each such
message a message fronrs-ome set Nk C E(n, 212). This set of intelligible
words Ark must be stable-with respect to /-place errors. We shall call the

'quantity (n s)In the redundancy of the code.
Since the exact formulation of this problem must involve the probable

distortion occurring during transmission, it is necessary to construct the
code (the set Nk C E(n, %.2)) in such a way that the probability of -

receiving more than 1 errors in a word of length n is sufficiently small.
This more complete formulation of the problem is studied in informa-
tion theory, but it need not concern us here.

In the constcuction of these codes it is especially convenient to
introduce and apply the concept of addition modulo 2; that is, according
to the rules

0 0 0 O, 1 (-D- 0 = I ,

'001-1, .1 0 1% 0.

- The circled plus sign indicates that the operation carried out is not
ordinary addition. The *mice between two binary words e =
xix2. x and 77 Y1Y2. y, (where all x, and y, have the value 0 or 1)
can now be written in the following way:

dv, - (xi o yi) + (x. o y.) + (x, o yn)

Since ones will appear as terms in this sum when and only when
corresponding symbols differ, the2total will be exactly equal to the
defined distance d(E, ,,). .

Let us consider the space of messages E(n, 212) and associate with
each word 6 E E(s, 212) a word 6' of length s 1, formed according to
the following rule: The first s symbols of the word 6' will be the same as
those of the word e. The last ((s + .1 )") symbol of the word e, is chosen
in such a way' as to make the sum (ordinary) of binary symbols in the,
word 6' even. In other words, if e' = xj.x2.

Xj ET) X2 CT)* .C..0 Xs CD Xs+i = . (6.3)

This equality (and some easily verified properties of addition Modulo 2)
allow us to express xs explicitly:

Xs + x 1 G x2 ® x, (6.4)

a
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For example, if e = 001011101, then e' = 0610111011.
The words f' formed in this way define the set of intelligible words

E(s + 1, 21).
It is clear that the distance between two distinct jntelligible words e'

and r must b45, even, for if e' differed from e" in an odd number of
positions, then the sum of the units in one of the words e' or e* would be
odd, a situation made impossible by the construction of these words.
And because the smallest even number not equal to zero is two, the
minimum distande between distinct intelligible words is two; thus the
subscript 2 is used.

Consequently, this code allows us to detect errors of one digit b);
counting the nonzero digits ; if the evenness criterion ( .3) is not satisfied,
then the word contains an error. This error detectioi process is widely
known as the evenness test and is very frequently a lied because of its
simplicity. The redundancy of the error detection code is

(s + 1) s
s + I

1

s + 1

We shall now consider a beautiful example of a code (due to
Hemming) which is capable of correcting single-digit errors.

Let 6 e E(s, 212) be a binary word of length s. We form the word
E E(n, 212) according to the following rule: Among the n positions in

the word e' , we chocne the fitst, the second, the fourth, ..., the (2k)th
positions for controlling symbols which are determined by the word e.
Between these positions are the significant positions. In the example

1001110010011011111101100010010 ,

we have indicated the mutual distribution of the controlling (dis-
tinguished by heavy type) -and the significant positions for the case
s ---- 26, n 31, k 4. In order to make s significant positions avail-
able, the number of controlling positions (k + 1) plus the number 4f
significant positions must lie between the kth and (k + 1)3' powers of
2; that is, it is necessary and sufficient that

2k s + k + 1 < . (6.5)

The redundancy of the given code is [(s + k + 1) + k + 1
(k + 1)I(s + k + 1).

The (1 + 1)" controlling position (position 2') is filled according to
the following rule: Each position of the word e` is defined' by a number
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1, counting from, the begfnning of the Sword. We examine the binary
representation of this number:

/ = /k2k + _12k` + + +

--the number of binary elements in the representition of the number 1
is defined so that, in accordance with (6.5), I < 2k-ti. ,

Let us now consider the set VI of all those positions 1for which l 1.

This set contains exactly one controlling position, the position with the
number I = V. We fill thi441gAiRn in such a way that the sum of all the
ones in the positions of 771 will be even.

In table 6.1 we give an example of a word e' , which can be read -
vertically in the second column. We have shown the binary number of
the positions and marked w4 a star those positions belonging to the
set 77,. Words f' constructed according to this rule shall be called
intelligible.

We shall show that the distance between any two intelligible words
6' and 71' is not less than 3that is, that the intelligible words form a set
N3 g. E(9 k 1, %a).

Case 1. Suppose words f and ij from gs,212) differ in at least three
positions. Clearly, then, the words e' and n' likewise differ in at least
three positions and, consequently, d(e' , n') 3.

Case 2. Let the words e and .7) differ in two positions. Then the words
e' and differ in two significant posftionssay positions /And I'.
Since 1 .$ l', the binary representation of I differs from thtR of .1' in at
least one place. Let i be the place in which the two representations differ
and, without loss of generality, say /I = I and /; = 0. Then I e
1' 0 .

ge::.ause the words e' and' n' differ in only two significant positions,
and since 1' 7T the sum of the significant digits in 7T for the word e'
and the sum of digits in the correspeinding Set for n' must differ. As the
sum of the digits in the set of positions 77-, must be madreven both for
6' and for 7)', the words f' and n' must differ again in the controlling
position of the set 7rt (in position 2'). Thus, 6' and 714Affer in at least
three positions, and d(', n') >. 3. Vit?

Case 3. Let the words e and 71 differ in exactly one position. Then
the words 6' and 17' differ in exactly one significant position with the
number /. This number cannot be a power of two, since numbers of the'

sform 2 are used for the controlling positions. Therefore, the number 1
has at least two nonzero binary digits I = I and 15 = I. Consequently,
position 1 is in both 1Ti and irj. Since the sum of the digits in these sets
must be made even for both e' and 71, 6' and n' must differ in controlling
positions 2 ' and
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Tabk 6.1

Position
No.

Contents of
the Position sr Wi ir ir3

00001
00010
00011
00100
00101

1

0
0
1

1

00110 1

00111 0
.01000 0
01001 1

01010 0
01011 0
01100, 1

01101 1

01110 0
01111 1

10000 1

10001
10010 1

10011
10100 1

'

10101 0 ,*
10110 1

10111 1

11000 0
11001 0
11010 0

11011 1

11100 0
11101 0
11110 1

11111 . 0

In each case, then, the words e' and n' differ in at least three positions,

and dU' , ?_ 3.
And so the set of intelligible messages is an N3 set; consequently, one

can in Pnciple restore distorted messages even if the error occurs only
in a single digit.

In the binary case, this process of restorafpn can be carried out with
comparative ease, for to restore a word i4 the binary alphabet, it is
sufficient to-- determine the number of the position in which the error
has occurred and to change the entry in this position from 0 to I or
vice versa.

53
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In the code that we are examining, the number of the position with an
incorrect entry can be ascertained by the following method: After the
transmission of the message f', during which only one digit can be
distorted (resulting in the message e*), we check whether the sum of the
digits is even or odd for each set of positions vs. In other words, we
calculate the controlling quantitiet

a, e: e: (-) eirN e ,

where ai is equal to the sum modulo 2 of all the symbols in the positions
of the set ir of the received message e*.

If all of the ai = 0, then f* is an intelligible message.' If, however,
some ec, = I, then an error must exist in a position 1 belonging to the set
irg, that is, in a position where the ith binary digit is equal to 1. Con-
versely, for each al = 0, no error occurs in any position belonging to
the set ri (since two errors that cancel each other out are extremely
improbable).

Thus, the controlling quantities ai are just the binary digits iAhe
expansion of the number of the position in which the error has rred;
that is,

/ = eek2k eik _12k -1 a12 ao (6.6)

So the controlling quantities of the received message completely
determine / and enable us to restore the correct message e'.

Let us take, for example, the word 6' written in table 6 and distort it
in the nineteenth po'sition.

We obtain the word

es = 1001110010011011010101100010010 ;.

carrying out our test, we find

= 0 ,

that is, / = 10011, the binary representation of the decimal number 19.
Changing 0 to 1 in the nineteenth position of the word 6*, we obtain
es, the word that we started with.

1. That is, if an error existi, it is an error of at least three positions, a situation
made impossible by the fact that the transmission time is so short that it is highly
improbable for more than one error to occur.
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A simpler code allowing us to correct single mistakes would result if
theword e' were given by a triple repetition of the word e e E(s,%).
Then if E and 71 differ in r positions, the corresponding wordi e' and 7.11
would differ in 3r positions. Thus, cl(e' 71') 3, provided that e'
The transmitted word is checked in the following manner.

A triple of,positions with the numbers I, 1 + s, 1 + 2s, where 1 <
1 s, s considered. If the symbols in these positions coincide, the
corresponding symbol is considered to have been given correctly. Since
the binary language contains only two letters, the symbols in two of
these three positions must coincide; and so, if only two of these symbols
coincide, theircommon rneaning is considered to be the correct one
and is entered in the third position. ,c

Thus, this code is capable of correcting single errors in each triple of
corresponsling positions. The weakness of the code is its high re-
dundancy, which is (35 .013s = 243s --2/3. The redundancy of the
former code is

k + [log2 (s-+ k + 1)] + 1
s+k+ 1 s+k+1

where the square brackets denote the greatest integer function (since
+ k 1 < 2k +); setting the length of the word (s + k + 1)

equal to n; the redundancy becomes {[log2 ;a] + 1}/n, which, for large n
(long ivords) is practically zero.

Codes that. allow the correction of errors in the transmission and
storage of information are very imp ant in various automatic control
devices. The last twenty Years hav seen the appearance of a grcat
number tf works concerning error- tabilizing codes that allow us to
correct multiple as well as single errors.

es



Metrics
and Nornmin ,

Multi-dimensional
Spaces

In this chaVer we examine an n-dimensional vectarcpace R and
various distance functions which determine metric spa e vector
space 11* serves as a generalization of the corpts of line (111), Plane
(130), and three-space (R3).,considered in elementary geometry. We can
arrive at a reasonable definition of the n-dimensional space ir (n-space)
in the following Manner.

We cOnsider the plane with some system of Cirtesian coordinates.
Each point M on the plane is uniquely defined by a pair of coordinates
(x, y), where x e R, y e R (here R denotes the set of real numbers).

To each point M there corresponds in a onesto-one manner a vector
joining the origin of the coordinate system to that point (see fig. 7.1).
Thus, there exists a one-to-one correspondence between any two Of the

following objects:
The point M4--* the vector OM 4-* the

pair of coordinates (x, y). Cow-
quently, we may think of the plane,
interchangeably as a set' of points, a set
of vectors, or a set of ordered pairs
(x, y) of real numbers. Analogously, we
can consider three-space as a set of
ordered triples (x, y, z) of real numbers.

Fig. 7.1 Our desired definition. (of n-space)
suggests itself.

By a vector in n-space (R4) we mean an ordered n-tuple of:real

numbers

(x1, x2, x) .
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The numbers xl, x2, ..., xn are called the coordinates of the vector e.
The set of all such vectors is the n-dimensional vector space

Clearly, the vector space. R3 is ordinary three-space; the vector space
R3 is the plane; and the space R' is the straight line.

Three operations are defined on vectors in Pr: addition, subtraction,
and multiplication by a scalar (real number). These operations are
defined as follows.

The sum of the.vectors e = (x1, x2, ..., x) and 7) (y1, y2, . . y,i)
is the vector

= e + (xi + yi,-x2 + . x. + ,

the coordinates of Which are the sums of the corresponding coordinates
of e and 7):

Analogously, the difference of these same vectors e and 71 is the vector

6 e (xi yi, Yat . x99 Yr) 9

.wilose coordinates are the differences of the Corresponding coordinates.
' The product of the scalar a and the vector e (x1, x2, . x,,,) is the

vector

so = af 4ax1, ax2:

In other words, to multiply a, vector by a scalar, we rauhiply each of
the coordinates by the scalar. On the plane and in three-space these
operations have naturalxgeometrical interpretations. For the sake of
clarity we shall examine two vectors, e and 7), in the plane (fig. 7.2).
From the diagram it is clear tha the sum = e + 77 is the vector
formed by the diagonal of the parielogram determined by tte vectors

and 71. This Property of vector addition is useful in phytical con-
siderations involving sums of vector quantities such as forces and
momenta.

A

Fig. 7.2 Fig. 7.3
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-0 *s.

The different* of the vectors and n (fig. /.3) is the 'vector directed
from the end of the vector /I to the end of tilt vector e.

The product of tile positive number a and the vector e.is a vector
having the same direction as e, but of length a times the length ore.
(Clearly, when a <A, the length'of the Nector ae is less than that of the
vector e.) To multiply the vector e by the negative number a, one must

multiply it by and then take the vector with the same length but
opposite direction: All of thise cases ire pictured in figure 7.4.

Fig. 1.4

Iktrne can easily verify that the operations on n-dimensional vectors

defined above satigfy the following properties, which are analogous to
the -properties of the corresponding operations defined on the real
numbers. H9re e, e Rn and a, b c The symbol 0 is used to denote
both the real number zero and the zero vector (0, 0, . 0) E Rn. When

0 is written as the sum or difference of vectors, the zero vector is denoted.

All scalars are written to the left of vectors in a scalar multiplication.
1. 6 + + (commutativity),
2. 6 + + + 77) + 4 (additive associativity),

3. 0, (
4. 0 + e e, where 0 c Or,
5, a(6 + + ci77 (distributivity of scalar multiplication over

vector addition),
6. fp + b)e ae + be (distributivity of sualar multiplication over

scalar dddition),
7. a(b..(41b)e (multiplicative associativity),

8. 0. = 0, where 0 e
9. a.0 = 0, where 0 e 51",

10.
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Clearly, two vectors, e and n, ars eqrial if and only if $ 0.
Let us confider some other exalvples of multidimenMonal spaces

that arise narnjrally in geometry.
Example 1. The set .of all spheres in three-space. Each sphere is

uniquely determind by,4n ordered 4-tuple (x, y, z, R), where (x, y, z)
is the center and R the radius.

Example 2. The sct of all tr ngles in three-space. Each triangle
uniquely determined by an orde 9-t uple (x1, Yi, 21, x2, y2, z2, x3, .313,z3)-
where the triple (xi, yi, zi) gives the coordinates of the ith vertex of the
triangle (i = 1, 2, or 3). We suggest that the reader convince himself that
in both of these examples multiplication of all of the coordinates (that
is, of the corresponding four- or ,nine-dimensional vector) by the real
number a is equivalent to performing a similarity transformation with
the center of similarity at the origin. We further suggest that the reader
make a more detailed study of various possible metrics in the spaces of
spheres and triangles.

Let us now examine various metrics which we can define on R" to
8form a metric space.

The Metric d2 (determining the metric space /2(0) is defined by-

where

d2(e, n) V(x1 + (x2 y2)2 + + (x. y)2 (7.1)

6 x2, 'CO and ti = (y1, y2, , yJ.

In three-space and in the plane, the metric d2 is just the ordinary
geometric distance function. Properties 1, 2, and 3 are obvious for this
metric. t

The space li(4) is defined by the metric d, where

d1(e, 17) = ix, yil + 1x2 y21 + Ix yThl . (7.2)

In the plane (the space /,(2) defined by t1e set R2 and thc metric d1) this
metric coincides with the metric d, defined in chapter 4. Again, pwper-

,ties-F,-1, and 3 are obvious.
The space C") results if we define a metric d according to the rule

"q) max (1-x1 Yli, x. .Y21. y,d) , (7-3)

that is, d,(e, 12) is the maximal devi4Ation of corresponding coordinates.
PrOperties 1, 2, and 3 are obviously satisfied by this metric also. For the

ee
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plane R2 it coincides with the metric do0 introduced in chapter 4.
Let us prove the triangle inequality for the space 11(*).
Let 4.

e = (X11 X2: Xij ; 7/ = (y11 y2i ; = (Z11 Z1, . . . ;).
Then, obviously,

= lxi yj + lx2 Y2I + + ynI

Ix, zi + zi + lx. z. y2I
+ 214 29 y,il

5 ki zil + yil + 1X2 Z21 + Y2I +
Ix,, zI + 1z. yI

ce,z) + n) ,

and the triangle inequality holds.
For the space C") with the metric dr,the triangle inequalitx is proved

as follows. Let I.xk ykl be the largest of the,differences of correspond-
ing coordinates; that is,

d.te, max (1x1 Y21. ixn Yap

= Ixk Yki = lXk z, + zk.

+ (7,4)

it is obvious that

Ixk matx 2'11. Ix2 z2I, Ixn znI) = d.(e, 0,

lZk ykl max (Izi 122 9219 9 1zn y;t1) = 449 71)
(7.$ Y

Conibining (7.4) and (7.5), we get the desired relation

d.ce, n) < d.(6. 0 + dt n).
A general class of metric spaces over R" is obtained if we introduce a

metric 14, defined by the formula.

n) = (x1 yi) + (x.,4 .Y2)P + +, yOP

where p > I ; the-space obtained in this wily is called ip(Th'. .

'Troperties 1, 2, and 3 Can.be verified in thiS case exactly as before.
The triangle ine9uality is derived frone Minkowski's inequality (see the'
footnote on page 21)i

4.

APAai + (a2 b2)' + + Can* bnY

!/' aly + + a,P +4b1P t

61)

e
+ + bnP

4
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It is not difficult to see that for p = 1 and p = 2 the spaces /1°) and
d.iplieti above are obtained. Asp co the metric di, approaches the

metric d;; that is, /cow = C°'. The reader can easily verify this by
generalizing the analogous argument in chapterA.

A mpre difficult exercise is to show that the sphere of radius r in the
space 11'3' is an octahedron (fig. 7.5), whereas in the space Ct3', it is a cube.
(fig. 7.6).
9

Fig. 7.5

-4

r

Fig. 7.6

The spaces over .11r2like the corresponding spaces 4, in theTlane
(W), are called A linkowski spaces. These)paces can be generalized very
naturally to an infinite-dimensional vector space whose elements are
vectors with an infinite nUniber of coordinates.

A more general class of metrics on 51n can be defined with the
introduCtion of the concept of convex body.

Let us introdusatylpral new defini-
tiOn§. We shall interpret a vector e irt n

as the point correspondips to the
erminal point of Chtt'vector when the

-- initial poihi is placed at "the origin. We
say that a subset V of is convex if for
each pair of vectors t E V and 71 e V, all
vectors of the form ae + (1
where a is an arbitrary number betwttn
zero and one (0 < a < 1), are con-
tained in V. geometrically (in R2 and
H3), this mean;i, qiat the entire line

segment joining any two points of VT§ contained in V.
A subset V cz. Fe is bounded if there e4igts a Positive number K such

that for any (x1, x2, ..., xn) E V,

lx1 < K; 1x21 < K; Ixnjt< K

Fig, 7.7
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Figure 7,7 pictures a convex butiunbounded subset of ilc12; the sukset

pictured in figure 7.8 is both conlkx and bounded.
A vector 6 belnging to a subset V of U8'1 is said to be an interior

point of V if for each vector 71 e 01% there exists a tiositive number a such

that + a77 E V. In other words, if we move in an arbitrary directiori

, from the cnd of the vector then we remain for some time in the set V.
If V is a flat surface in IV, then V has no interior points. In fact (see

fig. 7.9,), if 6 E V and the vector 77 is perpendicular to the plane in which

V lies, then for any ,posithe a the veitor e + co, lies outside this plane
'and, in particular, outsiderthe sct V.f.

A subset V of is said .te*--be full-dimensional if V has an interior

point.. A convex, bounded, fulI-dtmensional subset V of TV' will be

called a convex bod

Fig. 7.8 Fig. 7.9

Let us now consider a convex body V symmetric with respect to the.

origin (that is, if e c v, then V) in which the origin is an interioE

point. . .

This convex body dan be used to define a metric d, on GR'. Suppose

6 e Rn; let ='j. Since the origin (0, 0, ..., 0) is an

interior point of V, there exists a positive numbe a for which aC c V. rt

is easy to show that since V is hounded, there is an upper bound to
{a (.4 c V). In ot* words, there is a lower bound to { /al a .: V).

-.At this point, introduce the -concept of greatest lower bound. If

A c 118 is hounded below, then the gr(eatest lower bound of A (written

int' a) is the uniqu number b for which the following conditions are
(1E-A

satisfied;
1. We leave it to the reaii.er to show thAt a convex body must have,infinitely

manyinterior points.
2. The question of .the uniqueness and existence of the greatest lower bound i$

involved and need not concern us here. For a full discussion. see Walter Rudin,

Principles of Mathernwical Anwalysis (New York: McGraw-Hill, 1964).
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-1. If a e A, then b a; .

2. If c is a lower bound for A, then
We are now in a position to define

ldwer bound of {1la I a > Oi aC
distance dv(E, as the greatest

recall that t = e 71), that is,

inf '1'.
(7.6)v a

For =-. 0, that is, when the vectors e and-9 are equal, any a is admitted
(as we aiways have fiC = 0 e V), and the greatest lower bound in (7.6)
is zero. When e and 7) dO not cohlcide, the vector 0 0 and the per-
mtssible values of a are bounded from above by some positive number
A. Therefore, the values of 1/a are bounded below by 1/A, so dv(e, 7?)
inf lfti > b. In other words, if e 71, dvei, 7j) i; strictly greater than
acir#

,Mfg. tit
BecausZ- the convex body 'Y is syinmetric with respect to the origin,

ae V if and only if -4 ='a(-Oe V. Silic4 e, the
sylll f the metric is shown; plat is,

dv(e, 71) = 4017 0
fhus;properties 1, 2, And 3 (page 12)

triangle inegutility rrains to be shown
Let e, 71, and be vectors in r. We

and b such that a(e e Vaud b(4
quantity

hold for the metric 4. Only the
A

choose (two positive' numbers a
71) e V. Letlis denote by a the

1 1 a +,b+ ,
b`

Clearly, 0 < a < 1 and 1 - a ,a1(a fr). Because V is convex, the
vector ( .

0 = a[a(e Oji4 (1 - a)[ba. (7 .7)

is also containedin V. Transforrping expression (7.7) by#&tituting the
values of a and 1,- a and using the propCrties of operatib dlivvectors,
we get

whe c abl(a + b).

a
t a-47-h.* .71)

ab
'9) = c(C 7)) , (7.8)
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Since the vector 0 = c(f 71)e V, the nimber

1 a + b
c ab

must be at least as great as the distance eiv(e, ) (by the definition of
dv,(e, 77) as inf 11a):

a(C-OGV

(7.9)

However, by the definition of the numbers a and b, the quantities 1/a
and 11b can be made arbitrarily close to the distances dv(e, C) and

77), respe.:ctively, since dv(e, c) is the greatest lower bound of the
11a and dv(Z, 71) is the greatest lower bound of the I/b. And since the
inequality is preserved in the limiting process, (7.9) 9ie1ds the desired
inequality

dit(, dv(E, + dvg,n),. (7.10)

It is possible to develop the definition of the metric dv in several other
ways.

The *norm of the vector is the quantity

11611V = dv(69 0) = inf
QUI,' a

(7-11)

414*.e

It i,6ear that the distance dv(4, 77) defined above is just the norm of
the di&rence of the vectors e and 71, that is,

'dv(e, 7i) 11 V. (7.12)

It can be shown (and we leaveihe proof to the reader) tkat this norm
satisfies the following properties for 6 F Rn, e Dr, a e

1. 110v 0;
2. llv 0 if and only if. 6 = 0;
3. Ilaelly

4- I + ifk. Ilellv + Ilnllr.
It is possible to arrive at the concept of norm by a more abstract

route. We define a norm on the n-dimensiolial vector space as a
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function U:Zr R (where lel denotes V(e)) defined for each e E R"
in such a way that the following properties are satisfied (here, e e R",

1. 0;
2. jej = 0 if and only if 6 0;

3. Ilag IaI 1,0 ;

The vector space R" with a norm defined on it is called an n-dimen-
sional Minkowski space.8 It can be shown that every form can be
defined by some symmetric convex body V. To verify this assertion, we
consider the at v- consisting of all vectors e for which Ile 5 1. We
shall first show that V is a symmetric convex body in Rn.

To show that V is convex, let 6 e V and 71 G V, and let 0 5 a 5 1.
Then, by properties 3 and 4 of norMs,

af + (1 4)1711 + ikl 0711 r-r-. a

Since 11611 5 I and 117111 5 1, we have

ell + (1

a)7711 a + (l a) = I ,
4

that is, the vector (le (1 a)-q also belongs to the set V;*' thts, V is

convex.
Second, we must show that the origin is \an interior point of the set V.

If e is an arbitrary nonzero vector, we obtain upon setting a\--. I/ 611

that

11(1E11,7 a e II --- 1161,1 = 1 ;

that is; a6 c V. If e . 0, then for any positive real number a, ae E V,

sincc by property 2, a ell = 110 = 0 5 I.
The symmetry of theset V follows from property 3; if 6 c V, 11

I
1111ell = Ilell < 1. so if e G V, then e e V.

The' proof of the bouadedness of the set V is somewhat more cumber-
some, and so we shall omit it.

Since the set V is a convex body, it defines a norm n, denoted by
It kill remains to be shown that this norm coincides with

,the one chosen at the beginning of the proof, Let a be an arbitrary
positive number for which a6.G V. This means kiat la 5 1, which

3. In honor of t}ie great mathematician H. Minkowski, one of the creators of
the theory of relativity.

'

.
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implies that a fli 1 , or 1/a 110. So if O E V, 1 /a. and the
least such 1/a is obtained by setting 1/a strictly coal tO that is, by

. setting a = 1/lie . In Other words, the greatest lower bound of the I/a
is jle , or%

inf
1

goy a C

Comparing equations (7.13) and (7.11), we see that

= ite

(7.13)

(7.14)

the desired result.
In 3, the norm defined by a given convex body V has a simple

physical interpretation.
Let us suppose that we haVe some anisotropic device which propa-

gates sound waves at various speeds in different directions, and con-
sider the case in which the speed of sound in ppposite directions ,is thee
same.

We now choose a unit of speed (such as miles per hour) and construct
in each direction from the origin a vector whose length is equal to the
speed of sound in that direction: We make the further assumption that
the terminal points of these vectors bound a convex body V. Clearly, V
is bounded, symmetric with respect to the origin, and contains at least
one interior point, the origin.to there is a norm V and a metric dv
defined by

dv(e, 77) =

We reave it to the reader to verify that the distance dv(e, 7)) is nUmeri-
callY equal to the time required for a sound wave to travel from the
end of the vector e to the end of the vector 7) along the straight line
con acting them.

In addition to thc finite-dimensional MinkoWski spaces, one can
consider their infinite-dimensibnal analogsthe so:called Banach
spaces.4 In general, a BanaCh space is a vector space on which a norm
can be defined (that is, a space satisfying all of the properties listed on
page 49 along with a norm possessing all of The properties listed on

.page 56). .

4. In honor of thVolish mathematician S. Banach (1892-1945), one of the
founders of functional analysis --an important branch of modern mathematics.
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We'can construct an example of an infinite-dimensional Banach space
in the following way: Let C([0, 1]) be the set of all continuous functions
on the closed interval [0, 1] = (t I o t 1). The sum of two such
vectors (in this case, functions) is defined by its operation on a number t ;
that is, f + g is defined by (f + g)(1) = f(t) + g(t) for f and g elements
of C([0, 1]). Similarly, the scalar product af (for a e is defined by
(af)(t) = a[f(1)). The zero vector is the function 0 defined by 0(t) = 0,
all t c [Of 1]. As the norm of a function we take the maximum of the
absolute values of elements of the range, that is,

= max If(t)1c:)1

(It can be shown that because of the cheice of the domain [0, 1], such a
maximum necessarily exists.)

It is easy to show that all of the previously listed vector spziee and
norm properties are satisfieZt by the space C([0, 1]) with the norm
defined above.

Banach spaces in which the vectors are functiOns play an important
role in modern mathematics.

The claim that metric spaces whose points are functiotis are infinite-
.

dimensional can in some sense be justified by the following reasoning.
We partition the closed interval

(off [0, 1] by. drawing vertical lines
//ell

its coordinates on these vertical
(x1, zn) E :14 and represent

lines. The points in the plane

Now we take the vector 6 =
through n of its points (fig. 7.10).

o determined in this way form the
12' f4 .t5 /6 graph of some function defined on

Fig. 7.10 the n chosen points. Clearly, as
n co, this set of points "con-

-1

verges" t tin: uothe graph orconous function if we have chosen points in
IP whose coordinates on adjacent v'eztical lines become arbitrarily
close as n co. If we define a norm on lir by

= max (1.x1I, x2j, :

(where e = x,J, , T) c R.7), .then this norm- "in the limit" (as
n -4- co) becomes the norm defined by \



Metrics and Norms in Multi-dimensional Spaces 59

lif max VW!ostgi
where fe C([0, 1D.

The point is that n, the dimension of the normed space in question,
increases withoutrbOund, indicatink that the "limiting" ,space C([0, 1])
is infinite-dimensional.



The Smoothing
of Errors in
.Experimental
Measurements

In the measurement of physical quantities, experimental results often
appear as a sequence (x1, x2,..., x.) of observed values.

The quantity itself can be constant or variable. In the latter case, the
values xl, x2, . , .xis should vary according to some law; in the former
case, they should be nearly equal. But in any case, the measured quan-
tities xl, x2, . x, are subject to error. In other .words, there are
inherent -experimental 'imperfections that hinder the re5eption of
inform'ation from nature.

The mathematical probleim concerned with the treatment of measure-
ments is that of the establishment (so far as possible) of the correct
infOrmation. The Solution sin the application of concepts developed
previously for the automatic oyrection of errors in discrete messages.

If the measured quantities n take on 'arbitrary real values, we can
consider the n-dimensional vector space Rn as our space of information.
The distance d(e, ,7) between points of this space can be defined to fit the
experiment being carried out. But,most frequently, a metric d of the
form

d(6, 7)) = V(x1 yi) + + (8.1)

is used, for which the space of information is
Let N c be a subset of this space of informatiofi.
As acorrect" message, we take the vector n E N "closest" to the

message e that is received, that is, a vector n such that

d(4, = min AC, n') (8.2)
Tr.N

(if such a vector exists). It can be shown that in the interesting cases (for
example, when the set N consists of all vectors which require the xi to lie
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along somç curve when plotted against time codrdinates ti) such a
minimum exists, and thus so does the vector n. For the metric defined
by (8.1), this brinciple is commonly known as the method of least
squares, a method iAkodueed by the great German mathematician Karl
Friedrich Gauss.

Let us examine a concrete example of a subset of theordically
possible messages. e suppose that the measured quantity changes
linearly with respect to time, that is, if y is the measured quantity,

y = kt + b ,

where k and b are some constants and t is the time.'
This mcans that each vector n'e N has the form = (yr, .Y2, y

where

kt1 + b ,\
Y2 = ki2 + b ,

ya = kta b .

Let the vector actually obtained by measuring this quantity be equal
'to e = (x1, x,. .., x,,). The fundamental condition (8.2) is now written
as follows:

F(k, b) = (kt,-+ b x1)2 + (kr2 + b x22 + + (Icta + b x

In the expression F(k, b), the unknowns are the parameters k and b
defining the unknown theoretically possible messages; the quantities
/1, la, tn and xl, x2, ., x, are experimentally known.

To find the minimum value clf the quantity 1:(k, b) , we use a criterion
from differential calculus:

aF
(8.3)

I. For the sake of simplicity, we shall assume that the error involved in defining
moments of time i is negligible.
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which, in the given case of a positive quadratic tunction F(k,b), is
necessary and sufficient for a minimum.

Let us calculate the partial derivatives:

aF
1 1= 21 (kt + h xl) + + 21,,(kt + b x,,),

aF
2(kti + b 1) + + 2(kt + hab=

For convenience, we denote

[0] = t12 + t22,0- + 1,2,

[t] + t2 + .1- t,

[ix] = t1x1 + 12x2 + +

[x] + x2 + + xe,

[1]-1+1+ +1=n.

The expression (8.4) can then be written in the form

OF = 2[0]k + 2[t]b 2[rx],

OF 2[t]k + 2[1 ]6 2[x] .

(8.14)

(8.5)

Setting these expr ons equal to zero in accordance with (8,3), dividing
by two, and transferring the free terms to the right side, we get the
fundamental equation of the method of least Squares in symbolic form:

[12]k + [t]b [Ix] ,1

[t]k + = [x].
(8.6)

Figu4e 8.1 pictures measured values .x1, .x2, x3, x4, xs, x8, x7, x8, and the

"s
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Table 83

xi

1 020 0.30 0.06 0.09
2 0.43 0.91 0.39 0.83
3 0.35 1.50 0.53 2.25
4 0.52 2.00 1.04 4.00
5 0.81 2.20 1.78 4.84
6 0.68 2.62 1.79 6.86
7 1.15 3.00 145

Q\
9.00

8 0.85 3.30 2.81 10.89
,.

[x] 4.79 [t] = 15.83 [a] 11.85 [19 =, 38.76

straight line y - kt b defined according to the method of least
squares. The figure makes it cleat why we speak of the "smoothing" of
errors.

1.ble 8.1 shows the order in wh/ch the calculation is carried out.
The system (8.6) in this case has the form

38.76k + 15.831' 11.85,

15.84 + 8b =4.79 .

The solution is k = 0.319, b = 0.032. The unknown "message" is
y = 0.319t 0.032.

Analogously, if the set of theoretically possible messages N consists
of all parabolic fuyctions of the form y aI2 bt + c, then the funda-
mental condition (7.11) can be written in the form \

F(a, b, c) = (at ,42 + bt, + c x1)2 + + (att2 bt, c xit)2

= min .

The minimizing of the functions F(a,b, c) reduces to the solution of a

system of three linear equations in three unknown parameters a, b,
and c.

The method of least squares can also be easily carried out idthe case
of a metric d of the form

= yi)2 cx2(x2 )'2)2 + + «.(xn YO' , (8.7)

where e (x1, x2, ..., x) and 71 (y y2, ..., yn) are elements of
and are positive real numbers (weights). Unequal weights
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must be employed if it is known that separate measurements in the
experiment are not equally exact. In this case, it is necessary to assign
smaller weights to less accurate measurements.

The fundamental principle (8.2) for the smoothing of errors can also
be applied to the metrics of the spaces CI' and 41". However, in these
cases, methods of determining the terof theoretically possible messages
are more complicated.

11

Fig. 8.1

4t-



A ISIZe
General Definition

Wof Distance

, As we have already stared, various generalizations of the notion of
distance are possible. One of the most radical is used in the theory
of relativity, where we.consider the space-time universe consisting, of
points of the form (x, y, z, 1), where x, y, and z are spatial coordinates
and t is the time coordinate. The distance (space-time interval) between
two such points is defined by the,iformula ,

d($, 77) = A7 0(1 4)2 (x x1)2 (y 71)2 (z z1)2 (9.1)

where c is the speed of light. it is clear that the metric d can assume
imaginary as well as real values. v

It is also possible to generalize the concept of distance by assuming
that a function d, satisfying axioms 1, 2, 3, and 4 (chap. 3, page 12), can
have infinite value.' In this case, however, the space could be partitioned
into disjoint subsets, each of which would be a metric space in the usual
sen . Consequently,.such a generalization is not very interesting. The
pro of this fact cartegketched as follows.

Examining such a "generalized" space E, let us say two elements
M and N of E are "equivalent" if the distance d(M,N) is finite. Then,
clearly, each point M is equivalent to itself, and if M is equivalent to N,
N is equivalent to M (d(N,M) = d(M,N)). If M is equivalent to L and
L is eCluivalent to N, then since

d(M,N) d(M,L) + d(L,N),

d(M,N) is finite and M is equivalent to N. Thus the relation of "equiv- ,
alence" partitions the space E into "equivalence classes," each of
which is an ordinary metric space with a finite distance function.

1. More precisely, the value +Go.
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What this example points out is that it is no simple matter to come up
with a meaningful generalization of an abstract mathematicl concept.
In everysase, such a generalization must come from a deep study of the
mathematical objects involved and not simply from a formal manipula-
tion of axioms. The abortive attempt described above notwithstanding,
there do ex04 number of meaniiiigful generalizations of the concept of
metric spice, one of which we shall study further. By giving up the
axiom of symmetry (axiom 1), we obtain a class of spaces which is
connected with some iiteresting mathematical Accts.

We shall define a generalized metric space to be a set E and a function
d: £ x E gl (meaning that d has as its domain the Cartesian prod,uct
of E with itself and as its range the real numbers) with the following
properties (here 6, 77, and (are elements of E):

I. d(e, 71) 0.

2. The double equality da, d(?), = 0 is satisfied if and only if

=

3. d(, 7,) dv, + n).

Clearly, any ordinary digtance
function satisfies these condItions.
However, a function nonsymmetric
with respect.to its arguments can also
satisfy xioms 1, 2, and 3. In fact, we

"10 introduced .such a nonsymmetric
distance function at the. end of
chapter 4 in conneetion with the
definition of distance as the minimal
time required for Iravel from one

Fig. 9.1 point to another. Since a journey in
the opposite direction may require

more time, this metric is, in general, not symmetric, but the triangle
inequality (and axioms 1 and 2) are easily verified.

Anotla nonsymmetric distance function is definable on the space
consisting of the ten vertices of the diagram in figure 9.1.

The distance d(M M,) between the points M, and M, is defined as
the minimal number of line segments passing against the arrows in a
path joining M, and M.

For example,

d(M1, M10),---- 4 ; tAM10, MI) = 0;

d(Ma, Me), =,S; d(Afe, Ma) = 1 ; and so on .
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Clearly, d(M M1) 0. The condition d(A, I 1) = =
(both distances being zero) mewls that it is possible to join the point M,
to the point M1 and to join M1 to M, by means of line segmentsdirected
with the arrows; that is, M, and M1 are vertices of a closed path on
which all arrows go the same way. As there are no such loops in figure
9.1, the equality d(M,, M = d(M1, = 0 implies that the points M,
and M5 coincide. Thus, conditions 1 and 2 hold for this nonsymmetric
distance function.

The triangle inequality can be verified by the following argument. We
examine a path with the minimal number of segments directed against
the arrows joining M, tO Xfk and an analogous path from Mk to
Joining these paths, we obtain a path from M, to M5 with the number of-
line segments directed against the arrows equal to d(M,, Mk) +
d(M M 1). Since in the "shortest" path from M, to M5, the number of
such segments is at least as small,

d(M,, M1) d(M,, Mk) + d(Mk, M 5) . (9.2)

In this example it is possible to define a.new metric d* by the rule

d*(M,, M1) = d(ig,,' M1) + d(M1, MI) (9.3)

Clearly d*(M,, M 1) possesses the properties of an ordinary metric.
The analogous proposition, is true in an arbitrary genefalized metric

space.

THEOREM If (S, d) is a generalized metric space'and dt : S x S 1R

is defined by

d*(e, 72) = 71) + do, 0 , (9.4)

then (S, ds) is a metric space in the ordinary sense.

Proof The symmetry of the metric d* follows because the right side
of (9.4) does not change upon interchanging e and 7). The equality
d*(e, 7)) = 0 is equivalent to the double equality d(e, d(,, e) 0

(since d takes on no negative values) and is therefore equivalent to the
statement 7). Finally, since

and

d(,7)) + d(C, n)

An, 0 d(77, 0 + 4(6,
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we, get

or
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d(4 77) 4 d Af, + dg, 0 + AC, '11) + d(n, O ,

d*(6,71) z d*ce, + Pa,

and so the triangle inequality holds for the metric d*.
Another interesting example of a generalized metric space can

obtained using the important cdncept of a partici* ordered set.
A set S is said to be partially ordered if for some ordered pairs of

points (M, N) e S x S, the relation 6M N (read M precedes N) is
defined and satisfies the following axioms': ;

1. If M11 N and N M, tMn M = N (antisymmetry).
2. If M N and N L, then M ( L (transitivity).
An example of a partially ordered set is the set of vertices in figure 9.1.

We set Ai., MI if there is a path joining Mi to MI which moves only in
the direction of the arrows. For example, Ma M10, M1 M3, M2 (1 M6,
M1 M1.

A 'second example is obtained by considering to denote the relation
" < " on the real line; that is, x y if 6id only if x < y. In this case, it
is clear that for each pair of distinct points x and y eith y or y x
is valid. A set with such an ordering (in which for air of distinct
points x and y, either x y or y c x) is said to he linearly ordered by'.

In any partially ordered set it is possible to introduce the notion of an
immediate predecessor.

A point M is said to immediately prec de a point N (and we write
M 0 N) if M ;land there is no third point L different from M and N
lying " betweenWM and N; that is, such that M L N.

For example, in figure 9.1, 3,M nM m2 nm m I 0 1147, and so on.2

No real number has an immediate predecessor, for if x y, then
x (( (x + y)/2 y, since x < (x + y)I2 < y.

We now consider a finite partially ordered set Land suppose that that
set has the property of connectedness; that is, for each pair of points M
and N in £ there exists a sequence of points M = Ll, L2, . ., Lk = N
such that for each i with 1 < i < k 1, either Li L1 or
For the points i143 and M8 in figure 9.1, for example, we can construct
such a sequence as follows:

L1 = M3.; L2 A41; L4 = M8
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Ms ; M7 ; MB M7

Wc leave it to the rder to check that the set of vertices in figure 9.11s

connected.
The set of points in figure 9.2 is not

connected, since for the points Ms and
M3 such a connecting sequence does
not exist. However, the subsets E1 =
{MI, M2, A13s 1114} and E2 = {M5, 4165
M7, MO are connected. One can easily
verify that any finite partially ordered
set can be partitioned into disjoint
connected subsets.

We are now in a positiorQo introduce
Fig. 9.2 into an arbitrary partially adered set E

a metric d defined according to the
following rule. We first define a path from a point M to a point N to be
a chain oi points M = L L2, . . L. N such that for each I with
1 k it either Li 0 L11 or Li+ 1 0 1-1. We then define the
distance d(M, N) to be the length of the shortest path from M to N--the
length of a path being defined as the number of integers i such that
1 k, 1 and Li." 0 Li (that is, the number of steps "against
the arrows").

The nonnegativity of the distance d(M, N) follows from the*finition.
For the proof of the second axiom of distanceqwe nOte that for distinct
points Al and N, the condition d(M, N) 0 implies that there exists a
chain of points M LI, L2, . Lk N such diat L, 0 L + 1 and, in
particular, that Li 4+1 for each i. But then, by the second axiom
(transitivity) for partially ordered sets, we get that M N. Analogously,
from the condition d(N, Al) 0, it follows that N M. Thus, if
d(M, N) d(N, Al) = 0 is satisfied, M N and N A4 ; so, by the first
axiom (antisymmetry) for partially ordered sets, M N. Conversely,
if M N, then the length d(M, N) of the shortest path from M to N
and the length d(N, M) of the shortest path from N to M are equal to
zero. So the metric d satisfies the second condition for a generalized
metric.

For the proof of the third axiom (the triangle inequality) we employ
a familiar -method. Taking a shortest path M L1, L2, . . Lk Q

from M to Q and a shoitest path Q Lk, 1,k +1, ..., LR N from
Q to N,we form a path M Ll, I22, .11,k Q = Lk:Lk+1; ',.Lk+P
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= N from M to N. The total number of pairs of adjacent points in this..
chain for which Li +1 0 Li is equal to the .sum of the distances AM, Q)
and d(Q, N). Clearly, thc number of such pairs in the shortest path
from M to N can only be smaller:

d(M, N) d(M, Q) + d(Q, N) . (9 .5)

And we have shown that for any finite connected partially ordered set
E we can define a metric d so that (E, cl) forms a metric space.

As an exercise, we suggest that the reader prove that for every pair of
points M and N where M ( N, the distance d(M, N) = 0.

In a sense, the converse assertion is also true. In any generalized
metric space (E, d) it is possible to introduce a partial ordering Ct defined
by M Ct N if d(M, N) = 0.

To prove this, we must show that both axioms for a partial ordering
are satisfied. If M N and N c M, then d(M, N) = d(N, M) 0, and
by the second condition for a generalized metric, M N. The first
axiom for partially ordered sets isOus proved.

Now let af L and L N. Then d(M, L) = 0 and d(L, N) = 0. By
the triangle inequality

d(M, N) d(M, L) + d(L, N) = 0 ;

but by nonnetativity, 0 5 d(M, N), and so 0 d(M, N) 0; that is,
d(M, N) = 0 and M N.

Thus, we have shown that if M L and L N, then M N.
The partially ordered set w4ich we obtain in this way need not be

connected.
Examining, for example, the partially ordered set E of the points in

figure 9.2, one can define itween' pairs of points frbm the subset
{M19 M29 A139 A44} a distance by means of the shortest path. The

same can be done for the subset E2 {M5, Mo A479 M8}. We further
dqfine the distance between a point Mi c E1 and a point MI c E3 by

d(111,, Mi) = d(M MI) = 100 . (9.6)

It is easy to verify that we get a generalized metric space in which the
equality d(M, N) () is equivalent to the relation MCt At-in the partially
ordered set E. As we have already remarked, however, E is not a
connected set.

It is possible, however, to introduce the notion of a connected
generalized metric space. The space (E, d) is said to be connected if for
*any pair of (not necessarily distinct) pointS M and N of E there exists a

",4 9111,
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chain of points M = L1, L2, . . . , Lk = N such that for each adjacent
pair of points it and Li, I either 41-1,11-1-1) = 0 or d(L1+1, U = a
We leave it to the reader to verify that any connected generalized metric
space corresponds to a connected partially ordered set.

A finite .partially ordered set (and the corresponding metric space)
can be represented geometrically in a very simple manner. We depict the
elements of the partially ordered set as points in three-dimensional space
denoted by the same letters as the corresponding elements. We join each
pair of points M and N for which M C N by a line segment directed
from N to M, indicating the direction by an arrow. The geometric
figure obtained, consisting of the points (vertices) and the directed line
segments joining them, is called a graph. We have already seen examples
of grapbs in figures 9.1 and 9.2.

jt is easy to see that if M N, it is possible to travel from N to M by
means of a path that moves only in the direction of the arrows.

Metric spaces with nonsymmetric distance functions arc especially
important in the co.ncept ot' a discrete topological space.

With this we conclude our study of the concept of distance. We have
established that this concept in its many different aspects is connected
Apt only with prolilems in pure mathematics, but with such practical
problems as the construction of error-stabilizing codes. This multiplicity
of applications and the complicated logical connections are chdracteris-

I,tic of other essential mathematical concepts as well.- The principal
motivation for the creation of such concepts lies in the 'poSsibility of
connections and analogies to seemingly Unrelated fields ancLin the need
to discover the hidden principles upon which mathematical properties
depend.
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